Date | Topic | Slides | Reading |
---|---|---|---|
Jan 9 | Introduction | Smaldino and McElreath (2016) |
|
Jan 16 | Introduction to Quarto | Alston and Rick (2021) |
|
Jan 23 | Introduction to Github | Ivimey-Cook et al. (2023) |
|
Jan 30 | Generalized linear models (and revision of linear models) | Zuur et al. (2010) |
|
Feb 6 | Causal structure and model building | ||
Feb 13 | Introduction to mixed-models | Harrison et al. (2018) |
|
Reading week | |||
Feb 27 | Introduction to Bayesian analysis | Kruschke and Liddell (2018) |
|
Mar 5 | Generalised linear mixed models | Bolker et al. (2009) |
|
Mar 12 | Discussion on data and plans for written reports | Wasserstein and Lazar (2016) |
|
Mar 19 | Multivariate mixed models | Van de Pol and Wright (2009) |
|
Mar 26 | Schielzeth and Forstmeier (2009) |
||
Apr 2 | Forstmeier et al. (2017) |
Lectures
Schedule
About slides and notes
Slides
Slides in revealjs
format (html). If you want then as a pdf (note you might loose some functionality or contents due to tabs and scroll sections):
- Open the slides in your browser from a link on this page
- Press
e
to get into the PDF export mode (?print-pdf
should appear near the end of the url and white borders should appear) - Open the in-browser print dialog (CTRL/CMD+P).
- Change the
Destination
setting toSave as PDF
. - Change the
Layout
toLandscape
. - Change the
Margins
toNone
. - Enable the Background graphics option (if you want it)
- Click Save 🎉
Notes
Content of the slides in html format as a self-contained downloadable file and including tabs and scroll sections.
More importantly, notes have the commenting and annotateing tools activated via https://hypothes.is/. If you create a free account , you can annotate and comment slides as well as share your annotations/comments with the public or via private or public groups.
References
Alston, J. M., and J. A. Rick. 2021. A Beginner’s Guide to Conducting Reproducible Research. The Bulletin of the Ecological Society of America 102:e01801.
Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, and J.-S. S. White. 2009. Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology and Evolution 24:127–135.
Cinelli, C., A. Forney, and J. Pearl. 2022. A Crash Course in Good and Bad Controls. Sociological Methods & Research:00491241221099552.
Forstmeier, W., E.-J. Wagenmakers, and T. H. Parker. 2017. Detecting and avoiding likely false-positive findings – a practical guide. Biological Reviews 92:1941–1968.
Harrison, X. A., L. Donaldson, M. E. Correa-Cano, J. Evans, D. N. Fisher, C. E. D. Goodwin, B. S. Robinson, D. J. Hodgson, and R. Inger. 2018. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6:e4794.
Ivimey-Cook, E. R., J. L. Pick, K. R. Bairos-Novak, A. Culina, E. Gould, M. Grainger, B. M. Marshall, D. Moreau, M. Paquet, R. Royauté, A. Sánchez-Tójar, I. Silva, and S. M. Windecker. 2023. Implementing code review in the scientific workflow: Insights from ecology and evolutionary biology. Journal of Evolutionary Biology 36:1347–1356.
Kruschke, J. K., and T. M. Liddell. 2018. Bayesian data analysis for newcomers. Psychonomic Bulletin & Review 25:155–177.
Schielzeth, H., and W. Forstmeier. 2009. Conclusions beyond support: Overconfident estimates in mixed models. Behavioral Ecology 20:416–420.
Smaldino, P. E., and R. McElreath. 2016. The natural selection of bad science. Royal Society Open Science 3:160384.
Van de Pol, M., and J. Wright. 2009. A simple method for distinguishing within-versus between-subject effects using mixed models. Animal behaviour 77:753–758.
Wasserstein, R. L., and N. A. Lazar. 2016. The ASA Statement on p-Values: Context, Process, and Purpose. The American Statistician 70:129–133.
Wysocki, A. C., K. M. Lawson, and M. Rhemtulla. 2022. Statistical Control Requires Causal Justification. Advances in Methods and Practices in Psychological Science 5:25152459221095823.
Zuur, A. F., E. N. Ieno, and C. S. Elphick. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1:3–14.