Lectures

Schedule

Date Topic Slides Reading
Jan 7 Introduction Smaldino and McElreath (2016)
Jan 14 Generalized linear models (and revision of linear models) Zuur et al. (2010)
Jan 21 Introduction to Github Ivimey-Cook et al. (2023)
Jan 28 Introduction to Quarto Alston and Rick (2021)
Feb 4 workshop in Germany, no classes NA none
Feb 11 Causal structure and model building Cinelli et al. (2022), Wysocki et al. (2022)
Reading week
Feb 25 Introduction to mixed-models Harrison et al. (2018)
Mar 4 Introduction to Bayesian analysis Kruschke and Liddell (2018)
Mar 11 Generalised linear mixed models Bolker et al. (2009)
Mar 18 Discussion on data and plans for written reports NA Wasserstein and Lazar (2016)
Mar 25 Multivariate mixed models NA Van de Pol and Wright (2009)
Apr 1 NA Forstmeier et al. (2017)

About slides and notes

Slides

Slides in revealjs format (html). If you want then as a pdf (note you might loose some functionality or contents due to tabs and scroll sections):

  1. Open the slides in your browser from a link on this page
  2. Press e to get into the PDF export mode (?print-pdf should appear near the end of the url and white borders should appear)
  3. Open the in-browser print dialog (CTRL/CMD+P).
  4. Change the Destination setting to Save as PDF.
  5. Change the Layout to Landscape.
  6. Change the Margins to None.
  7. Enable the Background graphics option (if you want it)
  8. Click Save 🎉

Notes

Content of the slides in html format as a self-contained downloadable file and including tabs and scroll sections.

More importantly, notes have the commenting and annotateing tools activated via https://hypothes.is/. If you create a free account , you can annotate and comment slides as well as share your annotations/comments with the public or via private or public groups.

References

Alston, J. M., and J. A. Rick. 2021. A Beginner’s Guide to Conducting Reproducible Research. The Bulletin of the Ecological Society of America 102:e01801.
Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, and J.-S. S. White. 2009. Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology and Evolution 24:127–135.
Cinelli, C., A. Forney, and J. Pearl. 2022. A Crash Course in Good and Bad Controls. Sociological Methods & Research:00491241221099552.
Forstmeier, W., E.-J. Wagenmakers, and T. H. Parker. 2017. Detecting and avoiding likely false-positive findings – a practical guide. Biological Reviews 92:1941–1968.
Harrison, X. A., L. Donaldson, M. E. Correa-Cano, J. Evans, D. N. Fisher, C. E. D. Goodwin, B. S. Robinson, D. J. Hodgson, and R. Inger. 2018. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6:e4794.
Ivimey-Cook, E. R., J. L. Pick, K. R. Bairos-Novak, A. Culina, E. Gould, M. Grainger, B. M. Marshall, D. Moreau, M. Paquet, R. Royauté, A. Sánchez-Tójar, I. Silva, and S. M. Windecker. 2023. Implementing code review in the scientific workflow: Insights from ecology and evolutionary biology. Journal of Evolutionary Biology 36:1347–1356.
Kruschke, J. K., and T. M. Liddell. 2018. Bayesian data analysis for newcomers. Psychonomic Bulletin & Review 25:155–177.
Smaldino, P. E., and R. McElreath. 2016. The natural selection of bad science. Royal Society Open Science 3:160384.
Van de Pol, M., and J. Wright. 2009. A simple method for distinguishing within-versus between-subject effects using mixed models. Animal behaviour 77:753–758.
Wasserstein, R. L., and N. A. Lazar. 2016. The ASA Statement on p-Values: Context, Process, and Purpose. The American Statistician 70:129–133.
Wysocki, A. C., K. M. Lawson, and M. Rhemtulla. 2022. Statistical Control Requires Causal Justification. Advances in Methods and Practices in Psychological Science 5:25152459221095823.
Zuur, A. F., E. N. Ieno, and C. S. Elphick. 2010. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1:3–14.