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Note

Exclamation Important

Work in progress. New chapters are going to appears regularly meaning that if you download the pdf it might
be incomplete by the time we do the practical in class.

if you see a dragon in a section, it means it is under development

Figure 1.: Dream pet dragon

Licence

The document is available follwoing the license License Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International.

Figure 2.: License Creative Commons
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Part I.

Open Science

3





1. Introduction to open Science

1.1. Why do we need it?

1.2. Lecture

Figure 1.1.: Dream pet dragon

1.3. What it is?

1.4. Reproducible code and analysis
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2. Introduction to Rmarkdown

2.1. Lecture

Figure 2.1.: Dream pet dragon

2.2. Practical

We will create a new Rmarkdown document and edit it using basic R and Rmarkdown functions.

2.2.1. Context

We will use the awesome palmerpenguins dataset to explore and visualize data.

These data have been collected and shared by Dr. Kristen Gorman and Palmer Station, Antarctica LTER.

The package was built by Drs Allison Horst and Alison Hill, check out the official website.

The package palmerpenguins has two datasets:

• penguins_raw has the raw data of penguins observations (see ?penguins_raw for more info)
• penguins is a simplified version of the raw data (see ?penguins for more info)

For this exercise, we’re gonna use the penguins dataset.

library(palmerpenguins)
head(penguins)
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CHAPTER 2. INTRODUCTION TO RMARKDOWN

# A tibble: 6 x 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>

1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18 195 3250
4 Adelie Torgersen NA NA NA NA
5 Adelie Torgersen 36.7 19.3 193 3450
6 Adelie Torgersen 39.3 20.6 190 3650
# i 2 more variables: sex <fct>, year <int>

2.2.2. Questions

1) Install the package palmerpenguins.

LIGHTBULB Solution

install.packages("palmerpenguins")

2)

• Create a new R Markdown document, name it and save it.
• Delete everything after line 12.
• Add a new section title, simple text and text in bold font.
• Compile (“Knit”).

3)

• Add a chunk in which you load the palmerpenguins. The corresponding line of code should be hidden in
the output.

• Load also the tidyverse suite of packages. Modify the defaults to suppress all messages.

LIGHTBULB Solution

```{r, echo = FALSE, message = FALSE}
library(palmerpenguins)
library(tidyverse)
```

4) Add another chunk in which you build a table with the 10 first rows of the dataset.

LIGHTBULB Solution

8



2.2. PRACTICAL

```{r}
penguins %>%
slice(1:10) %>%
knitr::kable()

```

5) In a new section, display how many individuals, penguins species and islands we have in the dataset. This info
should appear directly in the text, you need to use inline code . Calculate the mean of the (numeric) traits measured
on the penguins.

LIGHTBULB Solution

## Numerical exploration

There are `r nrow(penguins)` penguins in the dataset,
and `r length(unique(penguins$species))` different species.
The data were collected in `r length(unique(penguins$island))`
islands of the Palmer archipelago in Antarctica.

The mean of all traits that were measured on the penguins are:

```{r echo = FALSE}
penguins %>%
group_by(species) %>%
summarize(across(where(is.numeric), mean, na.rm = TRUE))

```

6) In another section, entitled ‘Graphical exploration’, build a figure with 3 superimposed histograms, each one
corresponding to the body mass of a species.

LIGHTBULB Solution

9



CHAPTER 2. INTRODUCTION TO RMARKDOWN

## Graphical exploration

A histogram of body mass per species:

```{r, fig.cap = "Distribution of body mass by species of penguins"}
ggplot(data = penguins) +
aes(x = body_mass_g) +
geom_histogram(aes(fill = species),

alpha = 0.5,
position = "identity") +

scale_fill_manual(values = c("darkorange","purple","cyan4")) +
theme_minimal() +
labs(x = "Body mass (g)",

y = "Frequency",
title = "Penguin body mass")

```

7) In another section, entitled Linear regression, fit a model of bill length as a function of body size (flipper length),
body mass and sex. Obtain the output and graphically evaluate the assumptions of the model. As reminder here is
how you fit a linear regression.

```{r}
model <- lm(Y ~ X1 + X2, data = data)
summary(model)
plot(model)
```

LIGHTBULB Solution

## Linear regression

And here is a nice model with graphical output

```{r, fig.cap = "Checking assumptions of the model"}
m1 <- lm(bill_length_mm ~ flipper_length_mm + body_mass_g + sex, data = penguins)
summary(m1)
par(mfrow= c(2,2))
plot(m1)
```

8) Add references manually or using citr in RStudio.

1. Pick a recent publication from the researcher who shared the data, Dr Kristen Gorman. Import this publication
in your favorite references manager (we use Zotero, no hard feeling), and create a bibtex reference that you
will add to to the file mabiblio.bib.

2. Add bibliography: mabiblio.bib at the beginning of your R Markdown document (YAML).

10



2.2. PRACTICAL

3. Cite the reference iin the text using either typing the reference manually or using citr. To use citr, instal it
first; if everything goes well, you should see it in the pulldown menu Addins . Then simply use Insert
citations in the pull-down menu Addins.

4. Compile.

9) Change the default citation format (Chicago style) into the The American Naturalist format. It can be found here
https://www.zotero.org/styles. To do soo, add csl: the-american-naturalist.csl in the YAML.

10) Build your report in html, pdf and docx format.

Example of output

You can see an example of the Rmarkdown source file and pdf output

Figure 2.2.: Happy coding

11
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3. Introduction to github with R

3.1. Lecture

Figure 3.1.: Dream pet dragon

3.2. Practical

3.2.1. Context

We will configure Rstudio to work with our github account, then create a new project and start using github. To
have some data I suggest to use the awesome palmerpenguins dataset .

3.2.2. Information of the data

These data have been collected and shared by Dr. Kristen Gorman and Palmer Station, Antarctica LTER.

The package was built by Drs Allison Horst and Alison Hill, check out the official website.

The package palmerpenguins has two datasets.

library(palmerpenguins)

The dataset penguins is a simplified version of the raw data; see ?penguins for more info:

13
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CHAPTER 3. INTRODUCTION TO GITHUB WITH R

head(penguins)

# A tibble: 6 x 8
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g
<fct> <fct> <dbl> <dbl> <int> <int>

1 Adelie Torgersen 39.1 18.7 181 3750
2 Adelie Torgersen 39.5 17.4 186 3800
3 Adelie Torgersen 40.3 18 195 3250
4 Adelie Torgersen NA NA NA NA
5 Adelie Torgersen 36.7 19.3 193 3450
6 Adelie Torgersen 39.3 20.6 190 3650
# i 2 more variables: sex <fct>, year <int>

The other dataset penguins_raw has the raw data; see ?penguins_raw for more info:

head(penguins_raw)

# A tibble: 6 x 17
studyName `Sample Number` Species Region Island Stage `Individual ID`
<chr> <dbl> <chr> <chr> <chr> <chr> <chr>

1 PAL0708 1 Adelie Penguin ~ Anvers Torge~ Adul~ N1A1
2 PAL0708 2 Adelie Penguin ~ Anvers Torge~ Adul~ N1A2
3 PAL0708 3 Adelie Penguin ~ Anvers Torge~ Adul~ N2A1
4 PAL0708 4 Adelie Penguin ~ Anvers Torge~ Adul~ N2A2
5 PAL0708 5 Adelie Penguin ~ Anvers Torge~ Adul~ N3A1
6 PAL0708 6 Adelie Penguin ~ Anvers Torge~ Adul~ N3A2
# i 10 more variables: `Clutch Completion` <chr>, `Date Egg` <date>,
# `Culmen Length (mm)` <dbl>, `Culmen Depth (mm)` <dbl>,
# `Flipper Length (mm)` <dbl>, `Body Mass (g)` <dbl>, Sex <chr>,
# `Delta 15 N (o/oo)` <dbl>, `Delta 13 C (o/oo)` <dbl>, Comments <chr>

For this exercise, we’re gonna use the penguins dataset.

3.2.3. Questions

1) Create a github account if not done yet.

2) Configure Rstudio with your github account using the usethis package.

3) Create and Store your GITHUB Personal Authorisation Token

4) Create a new R Markdown project, initialize it for git, and create a new git repository

5) Create a new Rmarkdown document, in your project. Then save the file and stage it.

6) Create a new commit including the new file and push it to github (Check on github that it works).

14



3.2. PRACTICAL

7) Edit the file. Delete everything after line 12. Add a new section title, simple text and text in bold font. Then knit
and compile.

8) Make a new commit (with a meaningful message), and push to github.

9) Create a new branch, and add a new section to the rmarkdown file in this branch. Whatever you want. I would
suggest a graph of the data.

10) Create a commit and push it to the branch.

11) On github, create a pull request to merge the 2 different branches.

12) Check and accept the pull request to merge the 2 branches.

You have successfully used all the essential tools of git . You are really to explore  and discover its power

Figure 3.2.: Happy git(hub)-ing

3.2.4. Solution

2)

usethis::git_sitrep()
usethis::use_git_config(
user.name = "your_username",
user.email = "your_email@address.com"

)

3)

usethis::create_github_token()
gitcreds::gitcreds_set()

4)

15



CHAPTER 3. INTRODUCTION TO GITHUB WITH R

#create R project
usethis::use_git()

#restart R
usethis::use_github()
usethis::git_vaccinate()

16



Part II.

Statistics
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4. Generalized linear model, glm

4.1. Lecture

Figure 4.1.: Dream pet dragon

m1 <- glm(fish ~ french_captain, data = dads_joke, family = poisson)

4.1.1. Distributions

4.1.1.1. Continuous linear

• Gaussian

4.1.1.2. Count data

• poisson
• negative binomial
• quasi-poisson
• generalized poisson
• conway-maxwell poisson

19



CHAPTER 4. GENERALIZED LINEAR MODEL, GLM

4.1.1.3. censored distribution

4.1.1.4. zero-inflated / hurdle distribution

• zero-inflated/zero-truncated poisson
• censored poisson

4.1.1.5. zero-truncated distribution

4.1.1.6. zero-one-inflated distribution

see https://cran.r-project.org/web/packages/brms/vignettes/brms_families.html see alo MCMCglmm coursenotes

for help on description and to add some plots about those distribution

4.2. Practical

Exclamation-Triangle Warning

This section need to be severely updated

4.2.1. Logistic regression

library(tidyverse)
library(DHARMa)

This is DHARMa 0.4.6. For overview type '?DHARMa'. For recent changes, type news(package = 'DHARMa')

library(performance)

mouflon <- read.csv("data/mouflon.csv")
mouflonc <- mouflon[order(mouflon$age),]

mouflonc$reproduction <- ifelse(mouflonc$age < 13, mouflonc$reproduction, 0)
mouflonc$reproduction <- ifelse(mouflonc$age > 4, mouflonc$reproduction, 1)

plot(reproduction ~ age, mouflonc)
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4.2. PRACTICAL
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plot(jitter(reproduction) ~ jitter(age), mouflonc)
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bubble <- data.frame(age = rep(2:16, 2),
reproduction = rep(0:1, each = 15),
size = c(table(mouflonc$age, mouflonc$reproduction)))

bubble$size <- ifelse(bubble$size == 0 , NA, bubble$size)
ggplot(data = bubble, aes(x = age, y = reproduction))+
geom_point(aes(size = size*10))
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CHAPTER 4. GENERALIZED LINEAR MODEL, GLM

Warning: Removed 7 rows containing missing values (`geom_point()`).
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m1 <- glm(reproduction ~ age,
data = mouflonc,
family = binomial)

summary(m1)

Call:
glm(formula = reproduction ~ age, family = binomial, data = mouflonc)

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.19921 0.25417 12.59 <2e-16 ***
age -0.36685 0.03287 -11.16 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 928.86 on 715 degrees of freedom
Residual deviance: 767.51 on 714 degrees of freedom
(4 observations deleted due to missingness)

AIC: 771.51

Number of Fisher Scoring iterations: 4
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4.2. PRACTICAL

simulationOutput <- simulateResiduals(m1)
plot(simulationOutput)
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plotting the model prediction on the link (latent) scale

mouflonc$logit_ypred <- 3.19921 -0.36685 * mouflonc$age
plot(logit_ypred ~ jitter(age), mouflonc)
points(mouflonc$age, mouflonc$logit_ypred, col="red", type = "l", lwd = 2)
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CHAPTER 4. GENERALIZED LINEAR MODEL, GLM

plotting on the observed scale

mouflonc$ypred <- exp(mouflonc$logit_ypred) / (1 + exp(mouflonc$logit_ypred)) # inverse of logit

plot(reproduction ~ jitter(age), mouflonc)
points(mouflonc$age, mouflonc$ypred, col="red", type = "l", lwd = 2)

2 4 6 8 10 12 14 16

0.
0

0.
4

0.
8

jitter(age)

re
pr

od
uc

tio
n

Enfin, pour se simplifier la vie, il est aussi possible de récupérer les valeurs prédites de y directement

plot(x,y)
myreg <- glm(y~x, family=binomial(link=logit))
ypredit <- myreg$fitted
o=order(x)
points(x[o],ypredit[o], col="red", type="l", lwd=2)

m2 <- glm(reproduction ~ age + mass_sept + as.factor(sex_lamb) + mass_gain + density + temp,
data = mouflon,
family = binomial)

summary(m2)

Call:
glm(formula = reproduction ~ age + mass_sept + as.factor(sex_lamb) +

mass_gain + density + temp, family = binomial, data = mouflon)

24



4.2. PRACTICAL

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.622007 1.943242 0.835 0.403892
age -0.148567 0.033597 -4.422 9.78e-06 ***
mass_sept 0.029878 0.016815 1.777 0.075590 .
as.factor(sex_lamb)1 -0.428169 0.166156 -2.577 0.009969 **
mass_gain -0.094828 0.026516 -3.576 0.000348 ***
density -0.018132 0.003518 -5.154 2.55e-07 ***
temp 0.037244 0.138712 0.269 0.788313
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 916.06 on 674 degrees of freedom
Residual deviance: 845.82 on 668 degrees of freedom
(45 observations deleted due to missingness)

AIC: 859.82

Number of Fisher Scoring iterations: 4

check_model(m2)
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simulationOutput <- simulateResiduals(m2)
plot(simulationOutput)
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CHAPTER 4. GENERALIZED LINEAR MODEL, GLM
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4.2.1.1. previous offspring sex effect

pred.data <- data.frame(
age = mean(mouflon$age),
mass_sept = mean(mouflon$mass_sept),
sex_lamb = c(0,1),
mass_gain = mean(mouflon$mass_gain),
density = mean(mouflon$density),
temp = mean(mouflon$temp, na.rm =TRUE))

predict(m2, newdata = pred.data)

1 2
0.6225895 0.1944205

4.2.2. Poisson regression

data on galapagos islands species richness model of total number of species model of proportion of native model of
density of species

Fit 3 models - model of total number of species - model of proportion of endemics to total - model of species
density

hist(rpois(10000,3))
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4.2. PRACTICAL

Histogram of rpois(10000, 3)

rpois(10000, 3)
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CHAPTER 4. GENERALIZED LINEAR MODEL, GLM
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modpl <- glm(Species ~ Area + Elevation + Nearest, family=poisson, gala)
res <- simulateResiduals(modpl)
testDispersion(res)
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4.2. PRACTICAL

DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0
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data: simulationOutput
dispersion = 110.32, p-value < 2.2e-16
alternative hypothesis: two.sided

testZeroInflation(res)

DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 1
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DHARMa zero-inflation test via comparison to expected zeros with
simulation under H0 = fitted model

data: simulationOutput
ratioObsSim = NaN, p-value = 1
alternative hypothesis: two.sided

mean(gala$Species)

[1] 85.23333

var(gala$Species)

[1] 13140.74

hist(rpois(nrow(gala),mean(gala$Species)))

Histogram of rpois(nrow(gala), mean(gala$Species))

rpois(nrow(gala), mean(gala$Species))
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5. Introduction to linear mixed models

5.1. Lecture

5.1.1. Testing fixed effects

making a note that LRT on fixed effects should not be the preferred method and more inportantly should eb done
using ML and not REML Fitsee pinheiro & Bates 2000 p76

5.1.2. Shrinkage

The following is an example of shrinkage, sometimes called partial-pooling, as it occurs in mixed effects models.

It is often the case that we have data such that observations are clustered in some way (e.g. repeated observations for
units over time, students within schools, etc.). In mixed models, we obtain cluster-specific effects in addition to those
for standard coefficients of our regression model. The former are called random effects, while the latter are typically
referred to as fixed effects or population-average effects.

In other circumstances, we could ignore the clustering, and run a basic regression model. Unfortunately this assumes
that all observations behave in the same way, i.e. that there are no cluster-specific effects, which would often be an
untenable assumption. Another approach would be to run separate models for each cluster. However, aside from
being problematic due to potentially small cluster sizes in common data settings, this ignores the fact that clusters
are not isolated and potentially have some commonality.

Mixed models provide an alternative where we have cluster specific effects, but ‘borrow strength’ from the population-
average effects. In general, this borrowing is more apparent for what would otherwise be more extreme clusters, and
those that have less data. The following will demonstrate how shrinkage arises in different data situations.

5.1.2.1. Analysis

For the following we run a basic mixed model with a random intercept and random slopes for a single predictor
variable. There are a number of ways to write such models, and the following does so for a single cluster 𝑐 and
observation 𝑖. 𝑦 is a function of the covariate 𝑥, and otherwise we have a basic linear regression model. In this
formulation, the random effects for a given cluster (𝑢∗𝑐) are added to each fixed effect (intercept 𝑏0 and the effect of
𝑥, 𝑏1). The random effects are multivariate normally distributed with some covariance. The per observation noise 𝜎
is assumed constant across observations.

𝜇𝑖𝑐 = (𝑏0 + u0𝑐) + (𝑏1 + u1𝑐) ∗ 𝑥𝑖𝑐

u0, u1 ∼ 𝒩(0, Σ)

𝑦 ∼ 𝒩(𝜇, 𝜎2)

Such models are highly flexible and have many extensions, but this simple model is enough for our purposes.
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5.1.2.2. Data

Default settings for data creation are as follows:

• obs_per_cluster (observations per cluster) = 10
• n_cluster (number of clusters) = 100
• intercept (intercept) = 1
• beta (coefficient for x) = .5
• sigma (observation level standard deviation) = 1
• sd_int (standard deviation for intercept random effect)= .5
• sd_slope (standard deviation for x random effect)= .25
• cor (correlation of random effect) = 0
• balanced (fraction of overall sample size) = 1
• seed (for reproducibility) = 1024

In this setting, 𝑥 is a standardized variable with mean zero and standard deviation of 1. Unless a fraction is provided
for balanced, the 𝑁, i.e. the total sample size, is equal to n_cluster * obs_per_cluster. The following is the
function that will be used to create the data, which tries to follow the model depiction above. It requires the tidyverse
package to work.

5.1.2.3. Run the baseline model

We will use lme4 to run the analysis. We can see that the model recovers the parameters fairly well, even with the
default of only 1000 observations.

df <- create_data()

library(lme4)
mod <- lmer(y ~ x + (x | cluster), df)
summary(mod, cor = F)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: y ~ x + (x | cluster)

Data: df

REML criterion at convergence: 3012.2

Scaled residuals:
Min 1Q Median 3Q Max

-2.9392 -0.6352 -0.0061 0.6156 2.8721

Random effects:
Groups Name Variance Std.Dev. Corr
cluster (Intercept) 0.29138 0.5398

x 0.05986 0.2447 0.30
Residual 0.99244 0.9962
Number of obs: 1000, groups: cluster, 100
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Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 0.93647 0.06282 98.38512 14.91 <2e-16 ***
x 0.54405 0.04270 91.69469 12.74 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

5.1.2.4. Visualize the baseline model

Now it is time to visualize the results. We will use gganimate to bring the shrinkage into focus. We start with the
estimates that would be obtained by a ‘regression-by-cluster’ approach or a linear regression for each cluster. The
movement shown will be of those cluster-specific estimates toward the mixed model estimates. On the x axis is the
estimate for the intercepts, on the y axis are the estimated slopes of the x covariate.
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We see more clearly what the mixed model does. The general result is that cluster-specific effects (lighter color)
are shrunk back toward the population-average effects (the ‘black hole’), as the imposed normal distribution for the
random effects makes the extreme values less probable. Likewise, those more extreme cluster-specific effects, some
of which are not displayed as they are so far from the population average, will generally have the most shrinkage
imposed. In terms of prediction, it is akin to introducing bias for the cluster specific effects while lowering variance
for prediction of new data, and allows us to make predictions on new categories we have not previously seen - we
just assume an ‘average’ cluster effect, i.e. a random effect of 0.

5.1.2.5. Summary

Mixed models incorporate some amount of shrinkage for cluster-specific effects. Data nuances will determine the
relative amount of ‘strength borrowed’, but in general, such models provide a good way for the data to speak for itself
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when it should, and reflect an ‘average’ when there is little information. An additional benefit is that thinking about
models in this way can be seen as a precursor to Bayesian approaches, which can allow for even more flexibility via
priors, and more control over how shrinkage is added to the model.

5.2. Practical

5.2.1. Overview

This practical is intended to get you started fitting some simple mixed models with so called random intercepts. The
tutorial is derived from one that accompanied the paper (Houslay and Wilson 2017), “Avoiding the misuse of BLUP
in behavioral ecology”. Here, you will be working through a simplified version in which I have taken more time to
cover the basic mixed models and don’t cover multivariate models which were really the main point of that paper. So
if you find this material interesting don’t worry we will go through a more advanced version of the original paper
on multivariate models in chapter XX. The original version will be worth a work through to help you break into
multivariate mixed models anyway! Here we will:

• Learn how to fit - and interpret the results of - a simple univariate mixed effect model
• See how to add fixed and random effects to your model, and to test their significance in the normal frequentists

sense

We are going to use the lme4 (Bates et al. 2015) which is widely used and great for simple mixed models.
However, since, for philosophical reasons, lme4 does not provide any p-values for either fixed or random effects, we
are going to use the lmerTest (Kuznetsova et al. 2017), which add a bunch a nice goodies to lme4 For slightly
more complex models, including multivariate ones, generalised models, and random effects of things like shared
space, pedigree, phylogeny I tend to use different like MCMCglmm (Hadfield 2010) (which is Bayesian, look at
Jarrod Hadfield’s excellent course notes (Hadfield 2010)) or ASReml-R (The VSNi Team 2023) (which is likelihood
based/frequentist but sadly is not free).

5.2.2. R packages needed

First we load required libraries

library(lmerTest)
library(performance)
library(tidyverse)
library(rptR)

5.2.3. The superb wild unicorns of the Scottish Highlands

Unicorns, a legendary animal and also symbol or Scotland, are frequently described as extremely wild woodland
creature but also a symbol of purity and grace. Here is one of most accurate representation of the lengendary
animal.
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CHAPTER 5. INTRODUCTION TO LINEAR MIXED MODELS

Figure 5.1.: The superb unicorn of the Scottish Highlands

Despite their image of purity and grace, unicorns (Unicornus legendaricus) are raging fighter when it comes to
compete for the best sweets you can find at the bottom of rainbows (unicorn favourite source of food).

We want to know:

• If aggressiveness differs among individuals
• If aggressive behaviour is plastic (change with the environment)
• If aggressive behaviour depends on body condition of focal animal

With respect to plasticity, we will focus on rival size as an ‘environment’. Common sense, and animal-contest theory,
suggest a small animal would be wise not to escalate an aggressive contest against a larger, stronger rival. However,
there are reports in the legendary beasty literature that they get more aggressive as rival size increases. Those reports
are based on small sample sizes and uncontrolled field observations by foreigners Munro baggers enjoying their
whisky after a long day in the hills.

5.2.3.1. Experimental design

Here, we have measured aggression in a population of wild unicorns. We brought some (n=80) individual into the lab,
tagged them so they were individually identifiable, then repeatedly observed their aggression when presented with
model ‘intruders’ (animal care committe approved). There were three models; one of average unicorn (calculated as
the population mean body length), one that was build to be 1 standard deviation below the population mean, and one
that was 1 standard deviation above.

Data were collected on all individuals in two block of lab work. Within each block, each animal was tested 3 times,
once against an ‘intruder’ of each size. The test order in which each animal experienced the three instruder sizes was
randomised in each block. The body size of all focal individuals was measured at the beginning of each block so we
know that too (and have two separate measures per individual).
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5.2.3.2. looking at the data

Let’s load the data file unicorns_aggression.csv in a R object named unicorns and make sure we understand
what it contains

LIGHTBULB Solution

unicorns <- read.csv("data/unicorns_aggression.csv")

You can use summary(unicorns) to get an overview of the data and/or str(unicorns) to see the structure
in the first few lines. This data frame has 6 variables:

str(unicorns)

'data.frame': 480 obs. of 6 variables:
$ ID : chr "ID_1" "ID_1" "ID_1" "ID_1" ...
$ block : num -0.5 -0.5 -0.5 0.5 0.5 0.5 -0.5 -0.5 -0.5 0.5 ...
$ assay_rep : int 1 2 3 1 2 3 1 2 3 1 ...
$ opp_size : int -1 1 0 0 1 -1 1 -1 0 1 ...
$ aggression: num 7.02 10.67 10.22 8.95 10.51 ...
$ body_size : num 206 206 206 207 207 ...

summary(unicorns)

ID block assay_rep opp_size aggression
Length:480 Min. :-0.5 Min. :1 Min. :-1 Min. : 5.900
Class :character 1st Qu.:-0.5 1st Qu.:1 1st Qu.:-1 1st Qu.: 8.158
Mode :character Median : 0.0 Median :2 Median : 0 Median : 8.950

Mean : 0.0 Mean :2 Mean : 0 Mean : 9.002
3rd Qu.: 0.5 3rd Qu.:3 3rd Qu.: 1 3rd Qu.: 9.822
Max. : 0.5 Max. :3 Max. : 1 Max. :12.170

body_size
Min. :192.0
1st Qu.:229.7
Median :250.0
Mean :252.5
3rd Qu.:272.0
Max. :345.2

So the different columns in the data set are:

• Individual ID
• Experimental Block, denoted for now as a continuous variable with possible values of -0.5 (first block) or

+0.5 (second block)
• Individual body_size, as measured at the start of each block in kg
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• The repeat number for each behavioural test, assay_rep
• Opponent size (opp_size), in standard deviations from the mean (i.e., -1,0,1)
• aggression, our behavioural trait, measured 6 times in total per individual (2 blocks of 3 tests)

maybe add something on how to look at data structure closely using tables

5.2.4. Do unicorns differ in aggressiveness? Your first mixed model

Fit a first mixed model with lmer that have only individual identity as a random effect and only a population mean.

Why, so simple? Because we simply want to partition variance around the mean into a component that among-
individual variance and one that is within-individual variance.

Exclamation Important

We are going to use the function lmer() from the lme4 package. The notation of the model formula
is similar as the notation for a linear model but now we also add random effects using the notation (1 |
r_effect) which indicates that we want to fit the variable r_effect as a random effect for the intercept.
Thus, in lmer notation a simploe model would be :
lmer(Y ~ x1 + x2 + (1 | r_effect), data = data)

LIGHTBULB Solution

A sensible researcher would probably take the time to do some exploratory data plots here. So let’s write a
mixed model. This one is going to have no fixed effects except the mean, and just one random effect - individual
identity.

m_1 <- lmer(aggression ~ 1 + (1 | ID), data = unicorns)

boundary (singular) fit: see help('isSingular')

There is a warning… something about “singularities”. Ignore that for a moment.

Now you need to get the model output. By that I just mean use summary(model_name).

LIGHTBULB Solution

summary(m_1)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: aggression ~ 1 + (1 | ID)

Data: unicorns

REML criterion at convergence: 1503.7

Scaled residuals:
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Min 1Q Median 3Q Max
-2.68530 -0.73094 -0.04486 0.71048 2.74276

Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 0.000 0.000
Residual 1.334 1.155
Number of obs: 480, groups: ID, 80

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 9.00181 0.05272 479.00000 170.7 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
optimizer (nloptwrap) convergence code: 0 (OK)
boundary (singular) fit: see help('isSingular')

In the summary you will find a table of fixed effects.

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 9.00181 0.05272 479.00000 170.7 <2e-16 ***

The intercept (here the mean) is about 9 and is significantly >0 - fine, but not very interesting to us.

You will also find a random effect table that contains estimates of the among individual (ID) and residual variances.

Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 0.000 0.000
Residual 1.334 1.155
Number of obs: 480, groups: ID, 80

The among individual (ID) is estimated as zero. In fact this is what the cryptic warning was about: in most situations
the idea of a random effect explaining less than zero variance is not sensible (strangely there are exception!). So by
default the variance estimates are constrained to lie in positive parameter space. Here in trying to find the maximum
likelihood solution for among-individual variance, our model has run up against this constraint.

5.2.4.1. Testing for random effects

We can test the statistical significance of the random effect using the ranova() command in lmerTest. This
function is actually doing a likelihood ratio test (LRT) of the random effect. The premise of which is that twice the
difference in log-likelihood of the full and reduced (i.e. with the random effect dropped) is itself distributed as 𝜒2$
with DF equal to the number of parameters dropped (here 1). Actually, there is a good argument that this is too
conservative, but we can discuss that later. So let’s do the LRT for the random effect using ranova()
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LIGHTBULB Solution

ranova(m_1)

ANOVA-like table for random-effects: Single term deletions

Model:
aggression ~ (1 | ID)

npar logLik AIC LRT Df Pr(>Chisq)
<none> 3 -751.83 1509.7
(1 | ID) 2 -751.83 1507.7 0 1 1

There is apparently no among-individual variance in aggressiveness.

So this is a fairly rubbish and underwhelming model. Let’s improve it.

5.2.5. Do unicorns differ in aggressiveness? A better mixed model

The answer we got from our first model is not wrong, it estimated the parameters we asked for and that might be
informative or not and that might be representative or not of the true biology. Anyway all models are wrong but as
models go this one is fairly rubbish. In fact we have explained no variation at all as we have no fixed effects (except
the mean) and our random effect variance is zero. We woud have seen just how pointless this model was if we’d
plotted it

plot(m_1)
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Figure 5.2.: Fitted values vs residuals for a simple mixed model of unicorn aggression
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So we can probably do better at modelling the data, which may or may not change our view on whether there is any
real variation among unicorns in aggressiveness.

For instance, we can (and should have started with) an initial plot of the phenotypic data against opponent size
indicates to have a look at our prediction.

LIGHTBULB Solution

The code below uses the excellent ggplot2 but the same figure can be done using base R code.

ggplot(unicorns, aes(x = opp_size, y = aggression)) +
geom_jitter(

alpha = 0.5,
width = 0.05

) +
scale_x_continuous(breaks = c(-1, 0, 1)) +
labs(

x = "Opponent size (SD)",
y = "Aggression"

) +
theme_classic()

ggplot(unicorns, aes(x = opp_size, y = aggression)) +
geom_jitter(
alpha = 0.5,
width = 0.05

) +
scale_x_continuous(breaks = c(-1, 0, 1)) +
labs(
x = "Opponent size (SD)",
y = "Aggression"

) +
theme_classic()
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Figure 5.3.: Unicorn aggressivity as a function of opponent size when fighting for sweets

As predicted, there is a general increase in aggression with opponent size (points are lightly jittered on the x-axis to
show the spread of data a little better)

You can see the same thing from a quick look at the population means for aggression at opponent size. Here we do it
with the kable function that makes nice tables in rmarkdown documents.

unicorns %>%
group_by(opp_size) %>%
summarise(mean_aggr = mean(aggression)) %>%
knitr::kable(digits = 2)

opp_size mean_aggr

-1 8.00
0 8.91
1 10.09

So, there does appear to be plasticity of aggression with changing size of the model opponent. But other things may
explain variation in aggressiveness too - what about block for instance? Block effects may not be the subject of any
biologically interesting hypotheses, but accounting for any differences between blocks could remove noise.

There may also be systematic change in behaviour as an individual experiences more repeat observations (i.e. exposure
to the model). Do they get sensitised or habituated to the model intruder for example?

So let’s run a mixed model with the same random effect of individual, but with a fixed effects of opponent size (our
predictor of interest) and experimental block.
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LIGHTBULB Solution

m_2 <- lmer(aggression ~ opp_size + block + (1 | ID), data = unicorns)

5.2.5.1. Diagnostic plots

Run a few diagnostic plots before we look at the answers. In diagnostic plots, we want to check the condition of
applications of the linear mixed model which are the same 4 as the linear model plus 2 extra:

1. Linearity of the relation between covariates and the response

LIGHTBULB Solution

Done with data exploration graph (i.e. just plot the data see if it is linear) - see previous graph @ref(fig:rplotaggr).

2. No error on measurement of covariates

LIGHTBULB Solution

assumed to be correct if measurement error is lower than 10% of variance in the variable - I know this sounds
pretty bad

3. Residual have a Gaussian distribution

LIGHTBULB Solution

using quantile-quantile plot or histogram of residuals

par(mfrow = c(1, 2)) # multiple graphs in a window
qqnorm(residuals(m_2)) # a q-q plot
qqline(residuals(m_2))
hist(resid(m_2)) # are the residuals roughly Gaussian?
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Figure 5.4.: Checking residuals have Gaussian distribution

4. Homoscedasticty (variance of residuals is constant across covariates)

LIGHTBULB Solution

Using plot of residuals by fitted values

plot(m_2)
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fitted(.)
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Figure 5.5.: Residuals by fitted values for model m_2 to check homoscedasticity

5. Random effects have a Gaussian distribution

LIGHTBULB Solution

histogram of the predictions for the random effects (BLUPs)

# extracting blups
r1 <- as.data.frame(ranef(m_2, condVar = TRUE))
par(mfrow = c(1, 2))
hist(r1$condval)
qqnorm(r1$condval)
qqline(r1$condval)
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Figure 5.6.: Checking random effects are gaussian

6. Residual variance is constant across all levels of a random effect

LIGHTBULB Solution

No straightforward solution to deal with that. We can just do a plot is absolutely not-informative for that
problem but I always like to look at. It is the plot of the sorted BLUPs with their associated errors.

r1 <- r1[order(r1$condval), ] # sorting the BLUPs
ggplot(r1, aes(y = grp, x = condval)) +
geom_point() +
geom_pointrange(

aes(xmin = condval - condsd * 1.96, xmax = condval + condsd * 1.96)
) +
geom_vline(aes(xintercept = 0, color = "red")) +
theme_classic() +
theme(legend.position = "none")
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Here is a great magic trick because 3-5 and more can be done in one step

LIGHTBULB Solution

You need to use the function check_model() from the performance package.

check_model(m_2)
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Figure 5.7.: Graphical check of model assumptions
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5.2.5.2. Inferences

Now summarise this model. We will pause here for you to think about and discuss a few things: * What can
you take from the fixed effect table? * How do you interpret the intercept now that there are other effects in the
model? * What would happen if we scaled our fixed covariates differently? Why?

LIGHTBULB Solution

summary(m_2)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: aggression ~ opp_size + block + (1 | ID)

Data: unicorns

REML criterion at convergence: 1129.9

Scaled residuals:
Min 1Q Median 3Q Max

-2.79296 -0.64761 0.00155 0.67586 2.71456

Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 0.02478 0.1574
Residual 0.58166 0.7627
Number of obs: 480, groups: ID, 80

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 9.00181 0.03901 79.00000 230.778 <2e-16 ***
opp_size 1.04562 0.04263 398.00000 24.525 <2e-16 ***
block -0.02179 0.06962 398.00000 -0.313 0.754
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr) opp_sz

opp_size 0.000
block 0.000 0.000

Fire Exercise

Try tweaking the fixed part of your model:

• What happens if you add more fixed effects? Try it!
• Could focal body size also matter? If so, should you rescale before adding it to the model?
• Should you add interactions (e.g. block:opp_size)?
• Should you drop non-significant fixed effects?
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Fire Exercise

Having changed the fixed part of your model, do the variance estimates change at all?

• Is among-individual variance always estimated as zero regardless of fixed effects?
• Is among-individual variance significant with some fixed effets structures but not others?

5.2.6. What is the repeatability?

As a reminder, repeatability is the proportion of variance explained by a random effect and it is estimate as the ratio of
the variance associated to a random effect by the total variance, or the sum of the residual variance and the different
variance compoentn associated with the random effects. In our first model among-individual variance was zero, so R
was zero. If we have a different model of aggression and get a non-zero value of the random effect variance, we can
obviously calculate a repeatability estimate (R). So we are all working from the same starting point, let’s all stick
with a common set of fixed effects from here on:

m_3 <- lmer(
aggression ~ opp_size + scale(body_size, center = TRUE, scale = TRUE)
+ scale(assay_rep, scale = FALSE) + block
+ (1 | ID),

data = unicorns
)
summary(m_3)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula:
aggression ~ opp_size + scale(body_size, center = TRUE, scale = TRUE) +

scale(assay_rep, scale = FALSE) + block + (1 | ID)
Data: unicorns

REML criterion at convergence: 1136.5

Scaled residuals:
Min 1Q Median 3Q Max

-2.85473 -0.62831 0.02545 0.68998 2.74064

Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 0.02538 0.1593
Residual 0.58048 0.7619
Number of obs: 480, groups: ID, 80

Fixed effects:
Estimate Std. Error df

(Intercept) 9.00181 0.03907 78.07315
opp_size 1.05141 0.04281 396.99857
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scale(body_size, center = TRUE, scale = TRUE) 0.03310 0.03896 84.21144
scale(assay_rep, scale = FALSE) -0.05783 0.04281 396.99857
block -0.02166 0.06955 397.00209

t value Pr(>|t|)
(Intercept) 230.395 <2e-16 ***
opp_size 24.562 <2e-16 ***
scale(body_size, center = TRUE, scale = TRUE) 0.850 0.398
scale(assay_rep, scale = FALSE) -1.351 0.177
block -0.311 0.756
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr) opp_sz sc=Ts=T s(_s=F

opp_size 0.000
s(_,c=TRs=T 0.000 0.000
s(_,s=FALSE 0.000 -0.100 0.000
block 0.000 0.000 0.002 0.000

So we’d probably calculate R using the individual and residual variance simply as:

0.02538 / (0.02538 + 0.58048)

[1] 0.04189087

Fire Exercise

Do you see where I took the numbers ?

We can use some more fancy coding to extract the estimates and plugged them in a formula to estimate the repeatbil-
ity

v_id <- VarCorr(m_3)$ID[1, 1]
v_r <- attr(VarCorr(m_3), "sc")^2
r_man <- v_id / (v_id + v_r)
r_man

[1] 0.04188879

Which yields an estimate of approximately R=4%. Strictly speaking we should make clear this a conditional
repeatability estimate.

Conditional on what you might ask… on the fixed effects in your model. So our best estimate of 4% refers to the
proportion of variance in aggressiveness not explained by fixed effects that is explained by individual identity. This
isn’t much and still won’t be significant, but illustrates the point that conditional repeatabilities often have a tendency
to go up as people explain more of the residual variance by adding fixed effects. This is fine and proper, but can
mislead the unwary reader. It also means that decisions about which fixed effects to include in your model need to be
based on how you want to interpret R not just on, for instance, whether fixed effects are deemed significant.

53



CHAPTER 5. INTRODUCTION TO LINEAR MIXED MODELS

5.2.7. A quick note on uncertainty

Using lmer in the lme4 there isn’t a really simple way to put some measure of uncertainty (SE or CI) on
derived parameters like repeatabilities. This is a bit annoying. Such things are more easily done with other mixed
model like MCMCglmm and asreml which are a bit more specialist. If you are using lmer for models you want to
publish then you could look into the rptR (Stoffel et al. 2017). This acts as a ‘wrapper’ for lmer models and
adds some nice functionality including options to boostrap confidence intervals. Regardless, of how you do it, if you
want to put a repeatability in one of your papers as a key result - it really should be accompanied by a measure of
uncertainty just like any other effect size estimate.

Here I am estimating the repeatability and using bootstrap to estimate a confidence interval and a probability
associated with the repeatability with the rptR . For more information about the use of the package and the theory
behind it suggest the excellent paper associated with the package (Stoffel et al. 2017)

r_rpt <- rptGaussian(
aggression ~ opp_size + block + (1 | ID),
grname = "ID", data = unicorns

)

Bootstrap Progress:

r_rpt

Repeatability estimation using the lmm method

Repeatability for ID
R = 0.041
SE = 0.03
CI = [0, 0.103]
P = 0.0966 [LRT]

NA [Permutation]

5.2.8. An easy way to mess up your mixed models

We will try some more advanced mixed models in a moment to explore plasticity in aggressiveness a bit more. First
let’s quickly look for among-individual variance in focal body size. Why not? We have the data handy, everyone says
morphological traits are very repeatable and - lets be honest - who wouldn’t like to see a small P value after striking
out with aggressiveness.

Include a random effect of ID as before and maybe a fixed effect of block, just to see if the beasties were growing a
bit between data collection periods.
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lmer_size <- lmer(body_size ~ block + (1 | ID),
data = unicorns

)

Summarise and test the random effect.

LIGHTBULB Solution

summary(lmer_size)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: body_size ~ block + (1 | ID)

Data: unicorns

REML criterion at convergence: 3460.7

Scaled residuals:
Min 1Q Median 3Q Max

-1.80452 -0.71319 0.00718 0.70280 1.81747

Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 936.01 30.594
Residual 34.32 5.858
Number of obs: 480, groups: ID, 80

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 252.5031 3.4310 79.0000 73.595 <2e-16 ***
block -0.1188 0.5348 399.0000 -0.222 0.824
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr)

block 0.000

ranova(lmer_size)

ANOVA-like table for random-effects: Single term deletions

Model:
body_size ~ block + (1 | ID)

55



CHAPTER 5. INTRODUCTION TO LINEAR MIXED MODELS

npar logLik AIC LRT Df Pr(>Chisq)
<none> 4 -1730.4 3468.7
(1 | ID) 3 -2325.6 4657.1 1190.4 1 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Fire Exercise

What might you conclude, and why would this be foolish?

LIGHTBULB Solution

Hopefully you spotted the problem here. You have fed in a data set with 6 records per individual (with 2 sets of
3 identical values per unicorns), when you know size was only measured twice in reality. This means you’d
expect to get a (potentially very) upwardly biased estimate of R and a (potentially very) downwardly biased P
value when testing among-individual variance.

Fire Exercise

How can we do it properly?

LIGHTBULB Solution

We can prune the data to the two actual observations per unicorns by just selecting the first assay in each block.

unicorns2 <- unicorns[unicorns$assay_rep == 1, ]

lmer_size2 <- lmer(body_size ~ block + (1 | ID),
data = unicorns2

)
summary(lmer_size2)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: body_size ~ block + (1 | ID)

Data: unicorns2

REML criterion at convergence: 1373.4

Scaled residuals:
Min 1Q Median 3Q Max

-1.54633 -0.56198 0.01319 0.56094 1.42095

Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 912.84 30.213
Residual 57.78 7.601
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Number of obs: 160, groups: ID, 80

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 252.5031 3.4310 79.0000 73.595 <2e-16 ***
block -0.1188 1.2019 79.0000 -0.099 0.922
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr)

block 0.000

ranova(lmer_size2)

ANOVA-like table for random-effects: Single term deletions

Model:
body_size ~ block + (1 | ID)

npar logLik AIC LRT Df Pr(>Chisq)
<none> 4 -686.68 1381.3
(1 | ID) 3 -771.93 1549.9 170.51 1 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Summarise and test your random effect and you’ll see the qualitative conclusions will actually be very similar
using the pruned data set. Of course this won’t generallty but be true, so just be careful. Mixed models are
intended to help you model repeated measures data with non-independence, but they won’t get you out of
trouble if you mis-represent the true structure of observations on your dependent variable.

5.2.9. Happy mixed-modelling

Figure 5.8.: The superb unicorn
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6. Introduction to GLMM

6.1. Lecture

theoretical intro to glmm and introduce DHarma package to evaluate fit of glmm

Figure 6.1.: Dream pet dragon

6.2. Practical

This is an adapted version largely inspired by the tutorial in (Bolker et al. 2009). Spatial variation in nutrient
availability and herbivory is likely to cause population differentiation and maintain genetic diversity in plant popula-
tions.Here we measure the extent to which mouse-ear cress (Arabidopsis thaliana)exhibits population and genotypic
variation in their responses to these im-portant environmental factors. We are particularly interested in whether these
populations exhibit nutrient mediated compensation, where higher nutrient levels allow genotypes to better tolerate
herbivory (Banta et al. 2010). We use GLMMs to estimate the effect of nutrient levels, simulated herbivory, and
their interaction on fruit production in Arabidopsis thaliana(fixed effects), and the extent to which populations vary
in their responses(random effects, or variance components)

6.2.1. Packages and functions

You need to download the “extra_funs.R” script for some functions used in the Practical
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library(lme4)
library(tidyverse)
library(patchwork)
library(lattice)
library(DHARMa)
source("data/extra_funs.R")

6.2.2. The data set

In this data set, the response variable is the number of fruits (i.e. seed capsules) per plant. The number of fruits
produced by an individual plant(the experimental unit) was hypothesized to be a function of fixed effects,including
nutrient levels (low vs. high), simulated herbivory (none vs. apical meristem damage), region (Sweden, Netherlands,
Spain), and interactions among these. Fruit number was also a function of random effects including both the
population and individual genotype. Because Arabidopsis is highly selfing, seeds of a single individual served
as replicates of that individual.There were also nuisance variables, including the placement of the plant in the
greenhouse, and the method used to germinate seeds. These were estimated as fixed effects but interactions were
excluded.

• X observation number (we will use this observation number later, when we are accounting for overdispersion)
• reg a factor for region (Netherlands, Spain, Sweden).
• popu a factor with a level for each population.
• gen a factor with a level for each genotype.
• rack a nuisance factor for one of two greenhouse racks.
• nutrient a factor with levels for minimal or additional nutrients.
• amd a factor with levels for no damage or simulated herbivory (apical meristem damage; we will sometimes

refer to this as “clipping”)
• status a nuisance factor for germination method.
• total.fruits the response; an integer count of the number of fruits per plant.

6.2.3. Specifying fixed and random Effects

Here we need to select a realistic full model, based on the scientific questions and the data actually at hand. We first
load the data set and make sure that each variable is appropriately designated as numeric or factor (i.e.categorical
variable).

dat_tf <- read.csv("data/Banta_TotalFruits.csv")
str(dat_tf)

'data.frame': 625 obs. of 9 variables:
$ X : int 1 2 3 4 5 6 7 8 9 10 ...
$ reg : chr "NL" "NL" "NL" "NL" ...
$ popu : chr "3.NL" "3.NL" "3.NL" "3.NL" ...
$ gen : int 4 4 4 4 4 4 4 4 4 5 ...
$ rack : int 2 1 1 2 2 2 2 1 2 1 ...
$ nutrient : int 1 1 1 1 8 1 1 1 8 1 ...
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$ amd : chr "clipped" "clipped" "clipped" "clipped" ...
$ status : chr "Transplant" "Petri.Plate" "Normal" "Normal" ...
$ total.fruits: int 0 0 0 0 0 0 0 3 2 0 ...

The X, gen, rack and nutrient variables are coded as integers, but we want them to be factors. � We use
mutate() dplyr , which operates within the data set, to avoid typing lots of commands like dat_tf$rack
<- factor(dat_tf$rack) � At the same time, we reorder the clipping variable so that "unclipped" is the
reference level (we could also have used relevel(amd,"unclipped")).

dat_tf <- mutate(
dat_tf,
X = factor(X),
gen = factor(gen),
rack = factor(rack),
amd = factor(amd, levels = c("unclipped", "clipped")),
nutrient = factor(nutrient, label = c("Low", "High"))

)

Now we check replication for each genotype (columns) within each population (rows).

(reptab <- with(dat_tf, table(popu, gen)))

gen
popu 4 5 6 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 30 34 35 36
1.SP 0 0 0 0 0 39 26 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.SW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 20 0 0 0 0 0
2.SW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 14 0 0 0
3.NL 31 11 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.NL 0 0 0 35 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5.SP 0 0 0 0 0 0 0 0 43 22 12 0 0 0 0 0 0 0 0 0 0 0 0 0
6.SP 0 0 0 0 0 0 0 0 0 0 0 13 24 14 0 0 0 0 0 0 0 0 0 0
7.SW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 47 45
8.SP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 16 35 0 0 0 0 0 0 0

Fire Exercise

Exercise: this mode of inspection is OK for this data set but might fail for much larger data sets or for more
levels of nesting. See if you can think of some other numerical or graphical methods for inspecting the structure
of data sets.

1. plot(reptab) gives a mosaic plot of the two-way table; examine this, see if you can figure out how to
interpret it, and decide whether you think it might be useful

2. try the commands colSums(reptab>0) (and the equivalent for rowSums) and figure out what they are
telling you.

3. Using this recipe, how would you compute the range of number of genotypes per treatment combination?
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LIGHTBULB Solution

1. Do you find the mosaic plot you obtained ugly and super hard to read? Me too

plot(reptab)

reptab

popu

ge
n

1.SP 1.SW2.SW 3.NL 5.NL 5.SP 6.SP 7.SW 8.SP4561112
13

14
15

16 17181920 212223 2425 272830343536

Figure 6.2.: A truly useless plot no one can understand

2. colSums() do the sum of all the rows for each columns of a table. So colSums(reptab>0) gives you
for each genotype the number of populations (lines) where you have at least 1 observations.

colSums(reptab > 0)

4 5 6 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 30 34 35 36
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

rowSums(reptab > 0)

1.SP 1.SW 2.SW 3.NL 5.NL 5.SP 6.SP 7.SW 8.SP
3 2 2 3 2 3 3 3 3

3. You firts need to create a new table of number of observations per treatment and genotypes
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reptab2 <- with(dat_tf, table(paste(amd, nutrient, sep = "_"), gen))
range(reptab2)

[1] 2 13

This reveals that we have only 2–4 populations per region and 2–3 genotypes per population. However, we also
have 2–13 replicates per genotype for each treatment combination (four unique treatment combinations: 2 levels of
nutrients by 2 levels of simulated herbivory). Thus, even though this was a reasonably large experiment (625 plants),
there were a very small number of replicates with which to estimate variance components, and many more potential
interactions than our data can support. Therefore, judicious selection of model terms, based on both biology and the
data, is warranted. We note that we don’t really have enough levels per random effect, nor enough replication per
unique treatment combination. Therefore, we decide to omit the fixed effect of “region”, although we recognize that
populations in different regions are widely geographically separated.

However, as in all GLMMs where the scale parameter is treated as fixed and deviations from the fixed scale
parameter would be identifiable (i.e. Poisson and binomial (N > 1), but not binary, models) we may have to deal with
overdispersion.

6.2.4. Look at overall patterns in data

I usually like to start with a relatively simple overall plot of the data, disregarding the random factors, just to see
what’s going on. For reasons to be discussed below, we choose to look at the data on the log (or log(1 + x) scale.
Let’s plot either box-and-whisker plots (useful summaries) or dot plots (more detailed, good for seeing if we missed
anything).

Warning: `qplot()` was deprecated in ggplot2 3.4.0.
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Figure 6.3.: Number of fruits (log + 1) as a function of treatments
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Fire Exercise

Exercise generate these plots and figure out how they work before continuing. Try conditioning/faceting on
population rather than region: for facet_wrap you might want to take out the nrow = 1 specification. If you
want try reorder the subplots by overall mean fruit set and/or colour the points according to the region they
come from.

LIGHTBULB Solution

p1 <- qplot(
interaction(nutrient, amd),
log(1 + total.fruits),
data = dat_tf, geom = "boxplot") +

facet_wrap(~reg, nrow = 1) +
theme(axis.text.x = element_text(angle = 45)) +
ggtitle("Boxplot")

p2 <- qplot(
interaction(nutrient, amd),
log(1 + total.fruits),
data = dat_tf) +

facet_wrap(~reg, nrow = 1) +
stat_sum() +
theme(axis.text.x = element_text(angle = 45)) +
ggtitle("Dot plot")

p1 + p2

6.2.5. Choose an error distribution

The data are non-normal in principle (i.e., count data, so our first guess would be a Poisson distribution). If we
transform total fruits with the canonical link function (log), we hope to see relatively homogeneous variances across
categories and groups.

First we define a new factor that represents every combination of genotype and treatment (nutrient × clipping)
treatment, and sort it in order of increasing mean fruit set.

dat_tf <- dat_tf %>%
mutate(
gna = reorder(interaction(gen, nutrient, amd), total.fruits, mean)

)

Now time to plot it

ggplot(dat_tf, aes(x = gna, y = log(1 + total.fruits))) +
geom_boxplot() +
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theme_bw() +
theme(axis.text.x = element_text(angle = 90))
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Figure 6.4.: Boxplot of total fruits (log + 1) per genotypes and treatments

We could also calculate the variance for each genotype × treatment combination and provide a statistical summary of
these variances. This reveals substantial variation among the sample variances on the transformed data. In addition
to heterogeneous variances across groups, Figure 1 reveals many zeroes in groups, and some groups with a mean and
variance of zero, further suggesting we need a non-normal error distribution, and perhaps something other than a
Poisson distribution.

We could calculate λ(mean) for each genotype × treatment combination and provide a statistical summary of each
group’s λ.

grp_means <- with(dat_tf, tapply(total.fruits, list(gna), mean))
summary(grp_means)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 11.35 23.16 31.86 49.74 122.40

A core property of the Poisson distribution is that the variance is equal to the mean. A simple diagnostic is a plot of
the group variances against the group means:

• Poisson-distributed data will result in a linear pattern with slope = 1
• as long as the variance is generally greater than the mean, we call the data overdispersed. Overdispersion

comes in various forms:
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– a linear mean-variance relationship with Var = φµ (a line through the origin) with φ > 1 is called a
quasi-Poisson pattern (this term describes the mean-variance relationship, not any particular proability
distribution); we can implement it statistically via quasilikelihood (Venables and Ripley, 2002) or by
using a particular parameterization of the negative binomial distribution (“NB1” inthe terminology of
Hardin and Hilbe (2007))

– a semi-quadratic pattern, Var = µ(1 + αµ) or µ(1 + µ/k), is characteristic of overdispersed data that is
driven by underlying heterogeneity among samples, either the negative binomial (gamma-Poisson) or the
lognormal-Poisson (Elston et al. 2001)

We’ve already calculated the group (genotype × treatment) means, we calculate the variances in the same way.

grp_vars <- with(
dat_tf,
tapply(
total.fruits,
list(gna), var

)
)

We can get approximate estimates of the quasi-Poisson (linear) and negative binomial (linear/quadratic) pattern using
lm.

lm1 <- lm(grp_vars ~ grp_means - 1) ## `quasi-Poisson' fit
phi_fit <- coef(lm1)
lm2 <- lm((grp_vars - grp_means) ~ I(grp_means^2) - 1)
k_fit <- 1 / coef(lm2)

Now we can plot them.

plot(grp_vars ~ grp_means, xlab = "group means", ylab = "group variances")
abline(c(0, 1), lty = 2)
text(105, 500, "Poisson")
curve(phi_fit * x, col = 2, add = TRUE)
## bquote() is used to substitute numeric values
## in equations with symbols
text(110, 3900,
bquote(paste("QP: ", sigma^2 == .(round(phi_fit, 1)) * mu)),
col = 2

)
curve(x * (1 + x / k_fit), col = 4, add = TRUE)
text(104, 7200, paste("NB: k=", round(k_fit, 1), sep = ""), col = 4)
l_fit <- loess(grp_vars ~ grp_means)
mvec <- 0:120
lines(mvec, predict(l_fit, mvec), col = 5)
text(100, 2500, "loess", col = 5)
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Figure 6.5.: Graphical evaluation of distribution to use

Same with ggplot

ggplot(
data.frame(grp_means, grp_vars),
aes(x = grp_means, y = grp_vars)) +
geom_point() +
geom_smooth(
aes(colour = "Loess"), se = FALSE) +

geom_smooth(
method = "lm", formula = y ~ x - 1, se = FALSE,
aes(colour = "Q_Pois")) +

stat_function(
fun = function(x) x * (1 + x / k_fit),
aes(colour = "Neg_bin")

) +
geom_abline(
aes(intercept = 0, slope = 1, colour = "Poisson")) +

scale_colour_manual(
name = "legend",
values = c("blue", "purple", "black", "red")) +

scale_fill_manual(
name = "legend",
values = c("blue", "purple", "black", "red")) +

guides(fill = FALSE)

Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as
of ggplot2 3.3.4.
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`geom_smooth()` using method = 'loess' and formula = 'y ~ x'
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Figure 6.6.: Graphical evaluation of distribution to use with ggplot

These fits are not rigorous statistical tests — they violate a variety of assumptions of linear regression (e.g. constant
variance, independence), but they are good enough to give us an initial guess about what distributions we should
use.

Exercise

• compare a simple quadratic fit to the data (i.e., without the linear part) with the negative binomial and
quasipoisson fits

LIGHTBULB Solution
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lm3 <- lm(grp_vars ~ I(grp_means)^2 - 1) ## quadratic fit
quad_fit <- coef(lm3)

ggplot(
data.frame(grp_means, grp_vars),
aes(x = grp_means, y = grp_vars)) +
geom_point() +
geom_smooth(

method = "lm", formula = y ~ x - 1, se = FALSE,
aes(colour = "Q_Pois")) +

stat_function(
fun = function(x) x * (1 + x / k_fit),
aes(colour = "Neg_bin")

) +
geom_smooth(

method = "lm", formula = y ~ I(x^2) - 1, se = FALSE,
aes(colour = "Quad")) +

scale_colour_manual(
name = "legend",
values = c("blue", "purple", "black")) +

scale_fill_manual(
name = "legend",
values = c("blue", "purple", "black")) +

guides(fill = FALSE)

0

2000

4000

6000

8000

0 25 50 75 100 125
grp_means

gr
p_

va
rs

legend

Neg_bin

Q_Pois

Quad

Figure 6.7.: Graphical evaluation of distribution to use including quadratic effect
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6.2.5.1. Plotting the response vs treatments

Just to avoid surprises

ggplot(dat_tf, aes(x = amd, y = log(total.fruits + 1), colour = nutrient)) +
geom_point() +
## need to use as.numeric(amd) to get lines
stat_summary(aes(x = as.numeric(amd)), fun = mean, geom = "line") +
theme_bw() +
theme(panel.spacing = unit(0, "lines")) +
facet_wrap(~popu)
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Figure 6.8.: Fruit production by treatments by population

ggplot(dat_tf, aes(x = amd, y = log(total.fruits + 1), colour = gen)) +
geom_point() +
stat_summary(aes(x = as.numeric(amd)), fun = mean, geom = "line") +
theme_bw() +
## label_both adds variable name ('nutrient') to facet labels
facet_grid(. ~ nutrient, labeller = label_both)
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Figure 6.9.: Fruit production by genotype by treatments

6.2.6. Fitting group-wise GLM

Another general starting approach is to fit GLMs to each group of data separately, equivalent to treating the grouping
variables as fixed effects. This should result in reasonable variation among treatment effects. We first fit the models,
and then examine the coefficients.

glm_lis <- lmList(
total.fruits ~ nutrient * amd | gen,
data = dat_tf,
family = "poisson")

plot.lmList(glm_lis)

Loading required package: reshape

Attaching package: 'reshape'

The following object is masked from 'package:lubridate':

stamp

The following object is masked from 'package:dplyr':

rename
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The following objects are masked from 'package:tidyr':

expand, smiths

The following object is masked from 'package:Matrix':

expand

Using grp as id variables

value

535191222113616254241314152021233061727182834

−20 −10 0 10 20

(Intercept) nutrientHigh
535191222113616254241314152021233061727182834

amdclipped

−20 −10 0 10 20

nutrientHigh:amdclipped

Figure 6.10.: Model coefficients for GLM fits on each genotype

Three genotypes (5, 6, 34) have extreme coefficients (Fig. 5). A mixed model assumes that the underlying random
effects are normally distributed, although we shouldn’t take these outliers too seriously at this point — we are not
actually plotting the random effects, or even estimates of random effects (which are not themselves guaranteed to be
normally distributed), but rather separate estimates for each group. Create a plotting function for Q-Q plots of these
coefficients to visualize the departure from normality.

qqmath.lmList(glm_lis)

Using as id variables
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Figure 6.11.: Q-Q plots of model coefficients for GLM fits on each genotype

We see that these extreme coefficients fall far outside a normal error distribution. We shouldn’t take these outliers
too seriously at this point — we are not actually plotting the random effects, or even estimates of random effects, but
rather separate estimates for each group. Especially if these groups have relatively small sample sizes, the estimates
may eventually be “shrunk” closer to the mean when we do the mixed model. We should nonetheless take care to
see if the coefficients for these genotypes from the GLMM are still outliers, and take the same precautions as we
usually do for outliers. For example, we can look back at the original data to see if there is something weird about
the way those genotypes were collected, or try re-running the analysis without those genotypes to see if the results
are robust.

6.2.7. Fitting and evaluating GLMMs

Now we (try to) build and fit a full model, using glmer in the emoji::emoji("pacakage") lme4. This model has
random effects for all genotype and population × treatment random effects, and for the nuisance variables for the rack
and germination method (status). (Given the mean-variance relationship we saw it’s pretty clear that we are going to
have to proceed eventually to a model with overdispersion, but we fit the Poisson model first for illustration.)

mp1 <- glmer(total.fruits ~ nutrient * amd +
rack + status +
(amd * nutrient | popu) +
(amd * nutrient | gen),

data = dat_tf, family = "poisson"
)

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.0185742 (tol = 0.002, component 1)
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overdisp_fun(mp1)

chisq ratio p
13909.47140 23.25999 0.00000

The overdisp_fun() is described [here] https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#testing-for-
overdispersioncomputing-overdispersion-factor) on the absolutely fantastic FAQ about GLMMs by Ben Bolker
https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html

We can ignore the model convergence for the moment. This shows that the data are (extremely) over-dispersed, given
the model.

We can also use the excellent DHARMa (Hartig 2022) to evaluate fit of glm and glmm. So instead of using the
function overdisp_fun(), we can simply use the function testDispersion().

testDispersion(mp1)

DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.384
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DHARMa nonparametric dispersion test via sd of residuals fitted vs.
simulated

data: simulationOutput
dispersion = 1.2934, p-value = 0.384
alternative hypothesis: two.sided
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As you can see, DHARMa suggests that there is no overdispersion based on the distribution of residuals from
simulated data. We are going to consider that we have overdispersion and adjust the model accordingly.

Now we add the observation-level random effect to the model to account for overdispersion (Elston et al. 2001).

mp2 <- update(mp1, . ~ . + (1 | X))

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.159305 (tol = 0.002, component 1)

The model takes much longer to fit (and gives warnings). We look just at the variance components. In particular, if
we look at the correlation matrix among the genotype random effects, we see a perfect correlation.

attr(VarCorr(mp2)$gen, "correlation")

(Intercept) amdclipped nutrientHigh
(Intercept) 1.0000000 -0.9965313 -0.9877088
amdclipped -0.9965313 1.0000000 0.9882474
nutrientHigh -0.9877088 0.9882474 1.0000000
amdclipped:nutrientHigh 0.8321072 -0.8426404 -0.9076218

amdclipped:nutrientHigh
(Intercept) 0.8321072
amdclipped -0.8426404
nutrientHigh -0.9076218
amdclipped:nutrientHigh 1.0000000

We’ll try getting rid of the correlations between clipping (amd) and nutrients, using amd+nutrient instead of
amd*nutrient in the random effects specification (here it seems easier to re-do the model rather than using update
to add and subtract terms).

mp3 <- glmer(total.fruits ~ nutrient * amd +
rack + status +
(amd + nutrient | popu) +
(amd + nutrient | gen) + (1 | X),

data = dat_tf, family = "poisson"
)

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.226429 (tol = 0.002, component 1)

attr(VarCorr(mp3)$gen, "correlation")
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(Intercept) amdclipped nutrientHigh
(Intercept) 1.0000000 -0.9981776 -0.9966490
amdclipped -0.9981776 1.0000000 0.9955458
nutrientHigh -0.9966490 0.9955458 1.0000000

attr(VarCorr(mp3)$popu, "correlation")

(Intercept) amdclipped nutrientHigh
(Intercept) 1.0000000 0.9970406 0.9974900
amdclipped 0.9970406 1.0000000 0.9937833
nutrientHigh 0.9974900 0.9937833 1.0000000

Unfortunately, we still have perfect correlations among the random effects terms. For some models (e.g. random-
slope models), it is possible to fit random effects models in such a way that the correlation between the different
parameters (intercept and slope in the case of random-slope models) is constrained to be zero, by fitting a model
like (1|f)+(0+x|f); unfortunately, because of the way lme4 is set up, this is considerably more difficult with
categorical predictors (factors).

We have to reduce the model further in some way in order not to overfit (i.e., in order to not have perfect ±1 correlations
among random effects). It looks like we can’t allow both nutrients and clipping in the random effect model at either
the population or the genotype level. However, it’s hard to know whether we should proceed with amd or nutrient,
both, or neither in the model.

A convenient way to proceed if we are going to try fitting several different combinations of random effects is to fit
the model with all the fixed effects but only observation-level random effects, and then to use update to add various
components to it.

mp_obs <- glmer(total.fruits ~ nutrient * amd +
rack + status +
(1 | X),

data = dat_tf, family = "poisson"
)

Now, for example, update(mp_obs,.~.+(1|gen)+(amd|popu)) fits the model with intercept random effects at
the genotype level and variation in clipping effects across populations.

Fire Exercise

Exercise using update, fit the models with

1. clipping variation at both genotype and population levels;
2. nutrient variation at both genotype and populations; convince yourself that trying to fit variation in either

clipping or nutrients leads to overfitting (perfect correlations).
3. Fit the model with only intercept variation at the population and genotype levels, saving it as mp4; show

that there is non-zero variance estimated
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LIGHTBULB Solution

1.

mpcli <- update(mp_obs, . ~ . + (amd | gen) + (amd | popu))

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.0882114 (tol = 0.002, component 1)

VarCorr(mpcli)

Groups Name Std.Dev. Corr
X (Intercept) 1.431001
gen (Intercept) 0.296711

amdclipped 0.038708 -0.887
popu (Intercept) 0.754243

amdclipped 0.130903 0.997

2.

mpnut <- update(mp_obs, . ~ . + (nutrient | gen) + (nutrient | popu))

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.029394 (tol = 0.002, component 1)

VarCorr(mpnut)

Groups Name Std.Dev. Corr
X (Intercept) 1.41977
gen (Intercept) 0.47882

nutrientHigh 0.32631 -1.000
popu (Intercept) 0.74639

nutrientHigh 0.12083 1.000

3.

mp4 <- update(mp_obs, . ~ . + (1 | gen) + (1 | popu))
VarCorr(mp4)

Groups Name Std.Dev.
X (Intercept) 1.43127
gen (Intercept) 0.28582
popu (Intercept) 0.80598
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In other words, while it’s biologically plausible that there is some variation in the nutrient or clipping effect at the
genotype or population levels, with this modeling approach we really don’t have enough data to speak confidently
about these effects. Let’s check that mp4 no longer incorporates overdispersion (the observationlevel random effect
should have taken care of it):

overdisp_fun(mp4)

chisq ratio p
177.5249980 0.2886585 1.0000000

Using the DHARMa , we will also check the model. To do so we first need to simulate some data and get the scaled
residuals following the DHARMa notation. Then we can check the distributional properties of the scaled residuals
and see if they follow the classic assumption using the different functions provided.

scaled_res <- simulateResiduals(mp4)
plot(scaled_res)

DHARMa:testOutliers with type = binomial may have inflated Type I error rates for integer-
valued distributions. To get a more exact result, it is recommended to re-run testOutliers with type = 'bootstrap'. See ?testOutliers for details
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testZeroInflation(mp4, plot = TRUE)
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DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0
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DHARMa zero-inflation test via comparison to expected zeros with
simulation under H0 = fitted model

data: simulationOutput
ratioObsSim = 1.9768, p-value < 2.2e-16
alternative hypothesis: two.sided

# note about overdispersion
sum(dat_tf$total.fruits == 0)

[1] 126

a <- predict(mp4, type = "response")
b <- rep(0, 500)
for (j in 1:500) {
b[j] <- sum(sapply(seq(nrow(dat_tf)), function(i) rpois(1, a[i])) == 0)

}
hist(b)
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6.2.8. Inference

6.2.8.1. Random effects

glmer (lmer) does not return information about the standard errors or confidence intervals of the variance compo-
nents.

VarCorr(mp4)

Groups Name Std.Dev.
X (Intercept) 1.43127
gen (Intercept) 0.28582
popu (Intercept) 0.80598

6.2.8.1.1. Testing for random Effects

If we want to test the significance of the random effects we can fit reduced models and run likelihood ratio tests via
anova, keeping in mind that in this case (testing a null hypothesis of zero variance, where the parameter is on the
boundary of its feasible region) the reported p value is approximately twice what it should be.

mp4v1 <- update(mp_obs, . ~ . + (1 | popu)) ## popu only (drop gen)
mp4v2 <- update(mp_obs, . ~ . + (1 | gen)) ## gen only (drop popu)

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
unable to evaluate scaled gradient
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Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge: degenerate Hessian with 2 negative eigenvalues

anova(mp4, mp4v1)

Data: dat_tf
Models:
mp4v1: total.fruits ~ nutrient + amd + rack + status + (1 | X) + (1 | popu) + nutrient:amd
mp4: total.fruits ~ nutrient + amd + rack + status + (1 | X) + (1 | gen) + (1 | popu) + nutrient:amd

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
mp4v1 9 5017.4 5057.4 -2499.7 4999.4
mp4 10 5015.4 5059.8 -2497.7 4995.4 4.0639 1 0.04381 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(mp4, mp4v2)

Data: dat_tf
Models:
mp4v2: total.fruits ~ nutrient + amd + rack + status + (1 | X) + (1 | gen) + nutrient:amd
mp4: total.fruits ~ nutrient + amd + rack + status + (1 | X) + (1 | gen) + (1 | popu) + nutrient:amd

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
mp4v2 9 5031.6 5071.5 -2506.8 5013.6
mp4 10 5015.4 5059.8 -2497.7 4995.4 18.212 1 1.976e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

For various forms of linear mixed models, the RLRsim package can do efficient simulation-based hypothesis testing
of variance components — un- fortunately, that doesn’t include GLMMs. If we are sufficiently patient we can do
hypothesis testing via brute-force parametric bootstrapping where we repeatedly simulate data from the reduced
(null) model, fit both the re- duced and full models to the simulated data, and compute the distribution of the deviance
(change in -2 log likelihood). The code below took about half an hour on a reasonably modern desktop computer.

simdev <- function() {
newdat <- simulate(mp4v1)
reduced <- lme4::refit(mp4v1, newdat)
full <- lme4::refit(mp4, newdat)
2 * (c(logLik(full) - logLik(reduced)))

}

set.seed(101)
nulldist0 <- replicate(2, simdev())
## zero spurious (small) negative values
nulldist[nulldist < 0 & abs(nulldist) < 1e-5] <- 0
obsdev <- 2 * c(logLik(mp4) - logLik(mp4v1))

81



CHAPTER 6. INTRODUCTION TO GLMM

mean(c(nulldist, obsdev) >= obsdev)

[1] 0.01492537

The true p-value is actually closer to 0.05 than 0.02. In other words, here the deviations from the original statistical
model from that for which the original “p value is inflated by 2” rule of thumb was derived — fitting a GLMM
instead of a LMM, and using a moderate-sized rather than an arbitrarily large (asymptotic) data set — have made the
likelihood ratio test liberal (increased type I error) rather than conservative (decreased type I error).

We can also inspect the random effects estimates themselves (in proper statistical jargon, these might be considered
“predictions” rather than “estimates” (Robinson, 1991)). We use the built-in dotplot method for the random effects
extracted from glmer fits (i.e. ranef(model,condVar=TRUE)), which returns a list of plots, one for each random effect
level in the model.

r1 <- as.data.frame(ranef(mp4, condVar = TRUE, whichel = c("gen", "popu")))
p1 <- ggplot(subset(r1, grpvar == "gen"), aes(y = grp, x = condval)) +
geom_point() +
geom_pointrange(
aes(xmin = condval - condsd * 1.96, xmax = condval + condsd * 1.96)

) +
geom_vline(aes(xintercept = 0, color = "red")) +
theme_classic() +
theme(legend.position = "none")

p2 <- ggplot(subset(r1, grpvar == "popu"), aes(y = grp, x = condval)) +
geom_point() +
geom_pointrange(
aes(xmin = condval - condsd * 1.96, xmax = condval + condsd * 1.96)

) +
geom_vline(aes(xintercept = 0, color = "red")) +
theme_classic() +
theme(legend.position = "none")

p1 + p2
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Figure 6.12.: Distribution of BLUPs for genotypes and populations

As expected from the similarity of the variance estimates, the population-level estimates (the only shared component)
do not differ much between the two models. There is a hint of regional differentiation — the Spanish populations
have higher fruit sets than the Swedish and Dutch populations. Genotype 34 again looks a little bit unusual.

6.2.8.2. Fixed effects

Now we want to do inference on the fixed effects. We use the drop1 func- tion to assess both the AIC difference and
the likelihood ratio test between models. (In glmm_funs.R we define a convenience function dfun to convert the AIC
tables returned by drop1 (which we will create momentarily) into �AIC tables.) Although the likelihood ratio test
(and the AIC) are asymptotic tests, comparing fits between full and reduced models is still more accurate than the
Wald (curvature-based) tests shown in the summary tables for glmer fits.

(dd_aic <- dfun(drop1(mp4)))

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.00959403 (tol = 0.002, component 1)

Single term deletions

Model:
total.fruits ~ nutrient + amd + rack + status + (1 | X) + (1 |

gen) + (1 | popu) + nutrient:amd
npar dAIC

<none> 0.000
rack 1 55.083
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status 2 1.612
nutrient:amd 1 1.444

(dd_lrt <- drop1(mp4, test = "Chisq"))

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.00959403 (tol = 0.002, component 1)

Single term deletions

Model:
total.fruits ~ nutrient + amd + rack + status + (1 | X) + (1 |

gen) + (1 | popu) + nutrient:amd
npar AIC LRT Pr(Chi)

<none> 5015.4
rack 1 5070.5 57.083 4.179e-14 ***
status 2 5017.0 5.612 0.06044 .
nutrient:amd 1 5016.8 3.444 0.06349 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

On the basis of these comparisons, there appears to be a very strong effect of rack and weak effects of status and of
the interaction term. Dropping the nutrient:amd interaction gives a (slightly) increased AIC (�AIC = 1.4), so the full
model has the best expected predictive capability (by a small margin). On the other hand, the p-value is slightly
above 0.05 (p = 0.06). At this point we remove the non-significant interaction term so we can test the main effects.
(We don’t worry about removing status because it measures an aspect of experimental design that we want to leave in
the model whether it is significant or not.) Once we have fitted the reduced model, we can run the LRT via anova.

mp5 <- update(mp4, . ~ . - amd:nutrient)

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.00959403 (tol = 0.002, component 1)

anova(mp5, mp4)

Data: dat_tf
Models:
mp5: total.fruits ~ nutrient + amd + rack + status + (1 | X) + (1 | gen) + (1 | popu)
mp4: total.fruits ~ nutrient + amd + rack + status + (1 | X) + (1 | gen) + (1 | popu) + nutrient:amd

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
mp5 9 5016.8 5056.8 -2499.4 4998.8
mp4 10 5015.4 5059.8 -2497.7 4995.4 3.4439 1 0.06349 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Exercise Test now the reduced model.

In the reduced model, we find that both nutrients and clipping have strong effects, whether measured by AIC or LRT.
If we wanted to be still more careful about our interpretation, we would try to relax the asymptotic assumption. In
classical linear models, we would do this by doing F tests with the appropriate denominator degrees of freedom. In
“modern” mixed model approaches, we might try to use denominator-degree-of-freedom approximations such as the
Kenward-Roger (despite the controversy over these approximations, they are actually available in lmerTest, but
they do not apply to GLMMs. We can use a parametric bootstrap comparison between nested models to test fixed
effects, as we did above for random effects, with the caveat that is computationally slow.

In addition, we can check the normality of the random effects and find they are reasonable (Fig. 10).

r5 <- as.data.frame(ranef(mp5))
ggplot(data = r5, aes(sample = condval)) +
geom_qq() + geom_qq_line() +
facet_wrap(~ grpvar) +
theme_classic()

gen popu X

−2 0 2 −2 0 2 −2 0 2

−2.5

0.0

2.5

x

y

Figure 6.13.: Q-Q plot of BLUPs from model mp5

Checking everything with DHARMa also

scaled_res <- simulateResiduals(mp5)
plot(scaled_res)
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DHARMa zero-inflation test via comparison to expected zeros with
simulation under H0 = fitted model

data: simulationOutput
ratioObsSim = 1.9883, p-value = 0.008
alternative hypothesis: two.sided
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It is better than before but not perfect. I think this is completely OK and that it will extremely rarely be perfect.
You need to learn what is acceptable (by that I mean you find acceptable) and be happy to justify and discuss your
decisions.

6.2.9. Conclusions

Our final model includes fixed effects of nutrients and clipping, as well as the nuisance variables rack and status;
observation-level random effects to ac- count for overdispersion; and variation in overall fruit set at the population
and genotype levels. However, we don’t (apparently) have quite enough in- formation to estimate the variation in
clipping and nutrient effects, or their interaction, at the genotype or population levels. There is a strong overall
positive effect of nutrients and a slightly weaker negative effect of clipping. The interaction between clipping and
nutrients is only weakly supported (i.e. the p-value is not very small), but it is positive and about the same magnitude
as the clipping effect, which is consistent with the statement that “nutrients cancel out the effect of herbivory”.

Fire Exercise

Exercise

• Re-do the analysis with region as a fixed effect.
• Re-do the analysis with a one-way layout as suggested above

6.2.10. Happy generalized mixed-modelling

Figure 6.14.: A GLMM character
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7. Introduction to Bayesian Inference

7.1. Lecture

Amazing beasties and crazy animals

Figure 7.1.: Dream pet dragon

7.1.1. Bayes’ theorem

First, let’s review the theorem. Mathematically, it says how to convert one conditional probability into another one.

𝑃(𝐵 ∣ 𝐴) = 𝑃(𝐴 ∣ 𝐵) ∗ 𝑃(𝐵)
𝑃(𝐴)

The formula becomes more interesting in the context of statistical modeling. We have some model that describes a
data-generating process and we have some observed data, but we want to estimate some unknown model parameters.
In that case, the formula reads like:

𝑃(hypothesis ∣ data) = 𝑃(data ∣ hypothesis) ∗ 𝑃 (hypothesis)
𝑃 (data)

These terms have conventional names:

posterior = likelihood ∗ prior
evidence
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Prior and posterior describe when information is obtained: what we know pre-data is our prior information, and
what we learn post-data is the updated information (“posterior”).

The likelihood in the equation says how likely the data is given the model parameters. I think of it as fit: How well
do the parameters fit the data? Classical regression’s line of best fit is the maximum likelihood line. The likelihood
also encompasses the data-generating process behind the model. For example, if we assume that the observed data is
normally distributed, then we evaluate the likelihood by using the normal probability density function. You don’t
need to know what that last sentence means. What’s important is that the likelihood contains our built-in assumptions
about how the data is distributed.

The evidence (sometimes called average likelihood) is hareder to grasp. I am not sure how to describe it in an intuitive
way. It’s there to make sure the math works out so that the posterior probabilities sum to 1. Some presentations
of Bayes’ theorem gloss over it and I am not the exception . The important thing to note is that the posterior is
proportional to the likelihood and prior information.

posterior information ∝ likelihood of data ∗ prior information

So simply put, you update your prior information in proportion to how well it fits the observed data. So
essentially you are doing that on a daily basis for everything except when you ar doing frequentist stats .

Figure 7.2.: Bayesian Triptych

Exclamation-Triangle Warning

A word of encouragement! The prior is an intimidating part of Bayesian statistics. It seems highly subjective,
as though we are pulling numbers from thin air, and it can be overwhelming for complex models. But if we are
familiar with the kind of data we are modeling, we have prior information. We can have the model simulate
new observations using the prior distribution and then plot the hypothetical data. Does anything look wrong or
implausible about the simulated data? If so, then we have some prior information that we can include in our
model. Note that we do not evaluate the plausibility of the simulated data based on the data we have in hand
(the data we want to model); that’s not
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7.1.2. Intro to MCMC

We will now walk through a simple example coded in R to illustrate how an MCMC algorithm works.

Suppose you are interested in the mean heart rate is of students when asked a question in a stat course. You are not
sure what the exact mean value is, but you know the values are normally distributed with a standard deviation of 15.
You have observed 5 individuals to have heart rate of 104, 120,160,90,130. You could use MCMC sampling to
draw samples from the target distribution. We need to specify:

1. the starting value for the chain.
2. the length of the chain. In general, more iterations will give you more accurate output.

set.seed(170)
hr_obs <- c(104, 112, 132, 115, 110)

start_value <- 250

n_iter <- 2500 # define number of iterations

pd_mean <- numeric(n_iter) # create vector for sample values

pd_mean[1] <- start_value # define starting value

for (i in 2:n_iter) {
proposal <- pd_mean[i - 1] + MASS::mvrnorm(1, 0, 5) # proposal
lprop <- sum(dnorm(proposal, hr_obs, 15)) # likelihood of proposed parameter
lprev <- sum(dnorm(pd_mean[i - 1], hr_obs, 15))
if (lprop / lprev > runif(1)) { # if likelihood of prosposed > likehood previous accept
# and if likelihood is lower accept with random noise
pd_mean[i] <- proposal

} # if true sample the proposal
else {
(pd_mean[i] <- pd_mean[i - 1])

} # if false sample the current value
}
pd_mean <- as.mcmc(data.frame(mean = pd_mean))
mcmc_combo(pd_mean, combo = c("trace", "dens"))
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summary(pd_mean)

Iterations = 1:2500
Thinning interval = 1
Number of chains = 1
Sample size per chain = 2500

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
125.8105 32.8672 0.6573 13.3046

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
75.53 108.03 122.19 136.12 225.46

set.seed(170)
hr_obs <- c(104, 112, 132, 115, 110)
n_iter <- 2500 # define number of iterations

n_chain <- 3
start_value <- c(250, 100, 50)
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pd_mean <- array(NA, dim = c(n_iter, n_chain, 1), dimnames = list(iter = NULL, chain = NULL, params = "beta")) # create vector for sample values

for (j in seq_len(n_chain)) {
pd_mean[1, j, 1] <- start_value[j] # define starting value
for (i in 2:n_iter) {
proposal <- pd_mean[i - 1, j, 1] + MASS::mvrnorm(1, 0, 5) # proposal
if (sum(dnorm(proposal, hr_obs, 15)) # likelihood of proposed parameter
/ sum(dnorm(pd_mean[i - 1, j, 1], hr_obs, 15)) > runif(1, 0, 1)) {

pd_mean[i, j, 1] <- proposal
} # if true sample the proposal
else {

(pd_mean[i, j, 1] <- pd_mean[i - 1, j, 1])
} # if false sample the current value

}
}
color_scheme_set("mix-blue-red")
mcmc_combo(pd_mean, combo = c("trace", "dens_overlay"))
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summary(pd_mean)

Min. 1st Qu. Median Mean 3rd Qu. Max.
41.65 99.32 109.68 112.71 122.52 250.00

mcmc_combo(pd_mean, combo = c("trace", "dens_overlay"), n_warmup = 500)

93



CHAPTER 7. INTRODUCTION TO BAYESIAN INFERENCE

50

100

150

200

250

0 5001000150020002500

be
ta

Chain

1
2
3

0.00

0.01

0.02

0.03

50 100 150 200 250
beta

Chain

1
2
3

pd_burn <- pd_mean[-c(1:500), , , drop = FALSE]
summary(pd_burn)

Min. 1st Qu. Median Mean 3rd Qu. Max.
51.98 100.71 110.38 111.42 122.69 163.58

mcmc_combo(pd_burn, combo = c("trace", "dens_overlay"), iter1 = 501)
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7.1.3. Inferences

7.1.3.1. Fixed effects

Easy peazy lemon squeezy just have a look at the posteriro distribution, does it overlap 0 yes or no.

talk about mean, median and mode of a distribution as well as credible intervals

7.1.3.2. Random effects

Quite a bit more harder. because constrained to be positive

• Interpreting posterior distribution
• DIC
• WAIC

7.2. Practical

In this practical, we will revisit our analysis on unicorn aggressivity. Honestly, we can use any other data with
repeated measures for this exercise but I just love unicorns  . However, instead of fittng the model using lmer()
from the lmerTest (Kuznetsova et al. 2017), we will refit the model using 2 excellent softwares fitting models
with a Bayesian approach: MCMCglmm (Hadfield 2010) and brms (Bürkner 2021).

7.2.1. R packages needed

First we load required libraries

library(lmerTest)
library(tidyverse)
library(rptR)
library(brms)
library(MCMCglmm)
library(bayesplot)

7.2.2. A refresher on unicorn ecology

The last model on unicorns was:

aggression ~ opp_size + scale(body_size, center = TRUE, scale = TRUE)
+ scale(assay_rep, scale = FALSE) + block
+ (1 | ID)
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Those scaled terms are abit a sore for my eyes and way too long if we need to type them multiple times in this
practical. So first let’s recode them. -

unicorns <- read.csv("data/unicorns_aggression.csv")
unicorns <- unicorns %>%
mutate(
body_size_sc = scale(body_size),
assay_rep_sc = scale(assay_rep, scale = FALSE)

)

Ok now we can fit the same model by just using:

aggression ~ opp_size + body_size_sc + assay_rep_sc + block
+ (1 | ID)

We can now fit a model using lmer(). Since we want to compare a bit REML and Bayesian aproaches, I am going
to wrap the model function in a function called system.time(). This function simply estimate the user and
computer time use by the function.

mer_time <- system.time(
m_mer <- lmer(
aggression ~ opp_size + body_size_sc + assay_rep_sc + block

+ (1 | ID),
data = unicorns

)
)
mer_time

user system elapsed
0.116 0.000 0.119

summary(m_mer)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: aggression ~ opp_size + body_size_sc + assay_rep_sc + block +

(1 | ID)
Data: unicorns

REML criterion at convergence: 1136.5

Scaled residuals:
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Min 1Q Median 3Q Max
-2.85473 -0.62831 0.02545 0.68998 2.74064

Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 0.02538 0.1593
Residual 0.58048 0.7619
Number of obs: 480, groups: ID, 80

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 9.00181 0.03907 78.07315 230.395 <2e-16 ***
opp_size 1.05141 0.04281 396.99857 24.562 <2e-16 ***
body_size_sc 0.03310 0.03896 84.21144 0.850 0.398
assay_rep_sc -0.05783 0.04281 396.99857 -1.351 0.177
block -0.02166 0.06955 397.00209 -0.311 0.756
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr) opp_sz bdy_s_ assy__

opp_size 0.000
body_siz_sc 0.000 0.000
assay_rp_sc 0.000 -0.100 0.000
block 0.000 0.000 0.002 0.000

Ok so it took no time at all to do it and we got our “classic” results.

7.2.3. MCMCglmm

What makes MCMCglmm so useful and powerful in ecology and for practical Bayesian people is that:

1. it is blazing fast (for Bayesian analysis) for some models particularly models with structured covariances
2. it is fairly intuitive to code

but it also has some inconvenients:

1. it is blazing fast for Bayesian analysis meaning it is compared to maximum likelihood approaches
2. it has some limitations in terms of functionality, distribution availability and model specifications compared to

other Bayesian softwares
3. the priors, oh, the priors , are a bit tricky to code and understand .

7.2.3.1. Fitting the Model

So here is how we can code the model in MCMCglmm(). It is fairly similar to lmer() except that the random effects
are specified in a different argument.
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mcglm_time <- system.time(
m_mcmcglmm <- MCMCglmm(
aggression ~ opp_size + body_size_sc + assay_rep_sc + block,
random = ~ID,
data = unicorns

)
)

MCMC iteration = 0

MCMC iteration = 1000

MCMC iteration = 2000

MCMC iteration = 3000

MCMC iteration = 4000

MCMC iteration = 5000

MCMC iteration = 6000

MCMC iteration = 7000

MCMC iteration = 8000

MCMC iteration = 9000

MCMC iteration = 10000

MCMC iteration = 11000

MCMC iteration = 12000

MCMC iteration = 13000

summary(m_mcmcglmm)

Iterations = 3001:12991
Thinning interval = 10
Sample size = 1000

DIC: 1128.004
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G-structure: ~ID

post.mean l-95% CI u-95% CI eff.samp
ID 0.003686 9.807e-14 0.0262 45.81

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp
units 0.6044 0.5228 0.6819 1000

Location effects: aggression ~ opp_size + body_size_sc + assay_rep_sc + block

post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 9.00152 8.93150 9.07158 1000 <0.001 ***
opp_size 1.04940 0.96813 1.12946 1000 <0.001 ***
body_size_sc 0.03154 -0.03985 0.09563 1000 0.410
assay_rep_sc -0.05620 -0.13196 0.03546 893 0.184
block -0.02069 -0.16186 0.11553 1000 0.774
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

mcglm_time

user system elapsed
1.928 0.000 1.930

Model is slow and not good. We need more iteration and maybe even a longer burnin, and honestly maybe better
priors.

We can still take the time to have a look at the R object output from MCMCglmm(). The 2 main parts we are interrested
in are:

• Sol which stand for the model solution and includes the posteriro distribution of the fixed effects
• VCV, for the variance covariance estimates, which includes the posterior distribution of all (co)variances

estimates for both random effects and residual variance.

omar <- par()
par(mar = c(4, 2, 1.5, 2))
plot(m_mcmcglmm$Sol)
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Figure 7.3.: Posterior trace and distribution of the parameters in m_mcmcglmm using default settings
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Figure 7.4.: Posterior trace and distribution of the parameters in m_mcmcglmm using default settings

plot(m_mcmcglmm$VCV)
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Figure 7.5.: Posterior trace and distribution of the parameters in m_mcmcglmm using default settings

par(omar)
autocorr.diag(m_mcmcglmm$VCV)

ID units
Lag 0 1.0000000 1.00000000
Lag 10 0.8042405 -0.02074155
Lag 50 0.4807583 -0.04264317
Lag 100 0.1951356 0.04422296
Lag 500 0.1254589 0.04401956

Talk about autocorrelation, mixing, convergence and priors here

n_samp <- 1000
thin <- 500
burnin <- 20000
mcglm_time <- system.time(
m_mcmcglmm <- MCMCglmm(
aggression ~ opp_size + body_size_sc + assay_rep_sc + block,
random = ~ID,
data = unicorns,
nitt = n_samp * thin + burnin, thin = thin, burnin = burnin,
verbose = FALSE,
prior = list(

R = list(V = 1, nu = 0.002),
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G = list(
G1 = list(V = 1, nu = 0.002)

)
)

)
)
summary(m_mcmcglmm)

Iterations = 20001:519501
Thinning interval = 500
Sample size = 1000

DIC: 1126.66

G-structure: ~ID

post.mean l-95% CI u-95% CI eff.samp
ID 0.01987 0.0002904 0.05458 1000

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp
units 0.5917 0.5188 0.6763 1000

Location effects: aggression ~ opp_size + body_size_sc + assay_rep_sc + block

post.mean l-95% CI u-95% CI eff.samp pMCMC
(Intercept) 9.00136 8.92221 9.07383 1000 <0.001 ***
opp_size 1.05363 0.96382 1.13650 1000 <0.001 ***
body_size_sc 0.03373 -0.03781 0.10686 1000 0.396
assay_rep_sc -0.05861 -0.14186 0.02882 1000 0.182
block -0.02709 -0.16061 0.11441 1000 0.698
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

mcglm_time

user system elapsed
67.186 0.000 67.198

evaluate model here

102



7.2. PRACTICAL

omar <- par()
par(mar = c(4, 2, 1.5, 2))
plot(m_mcmcglmm$Sol)
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Figure 7.6.: Posterior trace and distribution of the paremeters in m_mcmcglmm with better settings
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Figure 7.7.: Posterior trace and distribution of the paremeters in m_mcmcglmm with better settings
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plot(m_mcmcglmm$VCV)
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Figure 7.8.: Posterior trace and distribution of the paremeters in m_mcmcglmm with better settings

par(omar)
autocorr.diag(m_mcmcglmm$VCV)

ID units
Lag 0 1.000000000 1.000000000
Lag 500 0.013876043 -0.044235206
Lag 2500 0.026120260 -0.048012241
Lag 5000 -0.049357725 0.021158672
Lag 25000 0.002544256 -0.003722595

7.2.4. Inferences

7.2.4.1. Fixed effects

Easy peazy lemon squeezy just have a look at the posterior distribution, does it overlap 0 yes or no.

posterior.mode(m_mcmcglmm$Sol)

(Intercept) opp_size body_size_sc assay_rep_sc block
9.00632282 1.07353252 0.03500916 -0.04048582 -0.03276275
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HPDinterval(m_mcmcglmm$Sol)

lower upper
(Intercept) 8.92221005 9.07383400
opp_size 0.96382086 1.13649873
body_size_sc -0.03781276 0.10685606
assay_rep_sc -0.14185602 0.02882443
block -0.16060691 0.11440706
attr(,"Probability")
[1] 0.95

7.2.4.2. Random effects

Quite a bit more harder. because constrained to be positive

posterior.mode(m_mcmcglmm$VCV)

ID units
0.00096263 0.59129362

HPDinterval(m_mcmcglmm$VCV)

lower upper
ID 0.0002903938 0.05458376
units 0.5188238599 0.67634529
attr(,"Probability")
[1] 0.95

7.2.5. brms

brms is an acronym for Bayesian Regression Models using ‘Stan’ (Bürkner 2021). It is a package developed to fit
regression models with a Bayesian approach using the amazing stan software (Stan Development Team 2021).

What makes brms so useful and powerful in ecology is that:

1. it is really intuitive to code (same syntax as glmer())
2. it is incredibly flexible since it is essentially a front end for stan via its rstan interface (Stan Development

Team 2024)

but with great powers come great responsability  
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brm_time <- system.time(
m_brm <- brm(
aggression ~ opp_size + body_size_sc + assay_rep_sc + block

+ (1 | ID),
data = unicorns, iter = 4750, warmup = 1000, thin = 15, cores = 4
# refresh = 0

)
)

Compiling Stan program...

Start sampling

brm_time

user system elapsed
103.424 6.753 93.875

summary(m_brm)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: aggression ~ opp_size + body_size_sc + assay_rep_sc + block + (1 | ID)
Data: unicorns (Number of observations: 480)

Draws: 4 chains, each with iter = 4750; warmup = 1000; thin = 15;
total post-warmup draws = 1000

Group-Level Effects:
~ID (Number of levels: 80)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.14 0.07 0.01 0.27 1.00 1077 994

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 9.00 0.04 8.92 9.08 1.00 1028 918
opp_size 1.05 0.04 0.96 1.14 1.00 969 953
body_size_sc 0.03 0.04 -0.05 0.12 1.00 1047 948
assay_rep_sc -0.06 0.04 -0.15 0.03 1.00 870 994
block -0.02 0.07 -0.16 0.11 1.00 778 945

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
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sigma 0.77 0.03 0.72 0.82 1.00 988 985

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

mcmc_acf_bar(m_brm, regex_pars = c("sd"))

Warning: The `facets` argument of `facet_grid()` is deprecated as of ggplot2 2.2.0.
i Please use the `rows` argument instead.
i The deprecated feature was likely used in the bayesplot package.
Please report the issue at <https://github.com/stan-dev/bayesplot/issues/>.
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Figure 7.9.: Autocorrelation in the chain for variance parameters in model m_brm

7.2.5.1. Hunder the hood

have a look at the stan code

stancode(m_brm)

// generated with brms 2.20.4
functions {
}
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data {
int<lower=1> N; // total number of observations
vector[N] Y; // response variable
int<lower=1> K; // number of population-level effects
matrix[N, K] X; // population-level design matrix
int<lower=1> Kc; // number of population-level effects after centering
// data for group-level effects of ID 1
int<lower=1> N_1; // number of grouping levels
int<lower=1> M_1; // number of coefficients per level
array[N] int<lower=1> J_1; // grouping indicator per observation
// group-level predictor values
vector[N] Z_1_1;
int prior_only; // should the likelihood be ignored?

}
transformed data {
matrix[N, Kc] Xc; // centered version of X without an intercept
vector[Kc] means_X; // column means of X before centering
for (i in 2:K) {
means_X[i - 1] = mean(X[, i]);
Xc[, i - 1] = X[, i] - means_X[i - 1];

}
}
parameters {
vector[Kc] b; // regression coefficients
real Intercept; // temporary intercept for centered predictors
real<lower=0> sigma; // dispersion parameter
vector<lower=0>[M_1] sd_1; // group-level standard deviations
array[M_1] vector[N_1] z_1; // standardized group-level effects

}
transformed parameters {
vector[N_1] r_1_1; // actual group-level effects
real lprior = 0; // prior contributions to the log posterior
r_1_1 = (sd_1[1] * (z_1[1]));
lprior += student_t_lpdf(Intercept | 3, 8.9, 2.5);
lprior += student_t_lpdf(sigma | 3, 0, 2.5)
- 1 * student_t_lccdf(0 | 3, 0, 2.5);

lprior += student_t_lpdf(sd_1 | 3, 0, 2.5)
- 1 * student_t_lccdf(0 | 3, 0, 2.5);

}
model {
// likelihood including constants
if (!prior_only) {
// initialize linear predictor term
vector[N] mu = rep_vector(0.0, N);
mu += Intercept;
for (n in 1:N) {

// add more terms to the linear predictor
mu[n] += r_1_1[J_1[n]] * Z_1_1[n];

}
target += normal_id_glm_lpdf(Y | Xc, mu, b, sigma);
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}
// priors including constants
target += lprior;
target += std_normal_lpdf(z_1[1]);

}
generated quantities {
// actual population-level intercept
real b_Intercept = Intercept - dot_product(means_X, b);

}

7.2.5.2. using shiny

launch_shinystan(m_brm)

Figure 7.10.: Shinystan interface

7.2.6. Inferences

7.2.6.1. Fixed effects

summary(m_brm)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: aggression ~ opp_size + body_size_sc + assay_rep_sc + block + (1 | ID)
Data: unicorns (Number of observations: 480)

Draws: 4 chains, each with iter = 4750; warmup = 1000; thin = 15;
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total post-warmup draws = 1000

Group-Level Effects:
~ID (Number of levels: 80)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.14 0.07 0.01 0.27 1.00 1077 994

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 9.00 0.04 8.92 9.08 1.00 1028 918
opp_size 1.05 0.04 0.96 1.14 1.00 969 953
body_size_sc 0.03 0.04 -0.05 0.12 1.00 1047 948
assay_rep_sc -0.06 0.04 -0.15 0.03 1.00 870 994
block -0.02 0.07 -0.16 0.11 1.00 778 945

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.77 0.03 0.72 0.82 1.00 988 985

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

mcmc_plot(m_brm, regex_pars = "b_")

b_block

b_assay_rep_sc

b_body_size_sc

b_opp_size

b_Intercept

0.0 2.5 5.0 7.5 10.0

Figure 7.11.: Fixed effect estimates (with 95% credible intervals) from model m_brm
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7.2.6.2. Random effects

summary(m_brm)

Family: gaussian
Links: mu = identity; sigma = identity

Formula: aggression ~ opp_size + body_size_sc + assay_rep_sc + block + (1 | ID)
Data: unicorns (Number of observations: 480)

Draws: 4 chains, each with iter = 4750; warmup = 1000; thin = 15;
total post-warmup draws = 1000

Group-Level Effects:
~ID (Number of levels: 80)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 0.14 0.07 0.01 0.27 1.00 1077 994

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 9.00 0.04 8.92 9.08 1.00 1028 918
opp_size 1.05 0.04 0.96 1.14 1.00 969 953
body_size_sc 0.03 0.04 -0.05 0.12 1.00 1047 948
assay_rep_sc -0.06 0.04 -0.15 0.03 1.00 870 994
block -0.02 0.07 -0.16 0.11 1.00 778 945

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.77 0.03 0.72 0.82 1.00 988 985

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

mcmc_plot(m_brm, pars = c("sd_ID__Intercept", "sigma"))

Warning: Argument 'pars' is deprecated. Please use 'variable' instead.
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sigma
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Figure 7.12.: Among-individual and residual standard deviance ( with 95% credible intervals) estimated from model
m_brm
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7.2.7. Happy Bayesian stats

Figure 7.13.: Sherlock Holmes, a truly bayesian detective
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8. Multivariate mixed models

8.1. Lecture

Amazing beasties and crazy animals

Figure 8.1.: Dream pet dragon

add a comparison of lrt

8.2. Practical

In this practical, we have collected data on the amazing blue dragon of the East that roam the sky at night.

We will use two different to fit more complex models that are not possible with lmer() from lme4 (Bates et
al. 2015). We will use:

• asreml-R which is a commercial software developed by VSNi (The VSNi Team 2023). ASReml fit models
using a maximum likelihood approach, is quite flexible and fast.

• MCMCglmm which is free and open-source and fit model using a Bayesian approach (Hadfield 2010). It is super
flexible and allow to fit a wide diversity of distribution.

The aims of the practical are to learn:

• How to phrase questions of interest in terms of variances and covariances (or derived correlations or regres-
sions);

• How to incorporate more advanced model structures, such as:

– Fixed effects that apply only to a subset of the response traits;

115



CHAPTER 8. MULTIVARIATE MIXED MODELS

– Traits which are measured a different number of times (e.g., repeated measures of behaviour and a single
value of breeding success);

• Hypothesis testing using likelihood ratio tests.

8.2.1. R packages needed

First we load required libraries

library(lmerTest)
library(tidyverse)
library(asreml)
library(MCMCglmm)
library(nadiv)

8.2.2. The blue dragon of the East

For this practical, we have collected data on the amazing blue dragon of the East that roam the sky at night.

Figure 8.2.: Blue dragon male

We tagged all dragons individually when they hatch from their eggs. Here, we concentrate on female dragon that
produce a single clucth of eggs per mating seasons. Adult femlae blue dragons need to explore vast amount of land
to find a compatible male. We thus hypothesized that maximum flight speed as well as exploration are key traits to
determine fitness. We were able to obtain repeated measures of flying speed and exploration on 80 adult females
during one mating season and also measure the number of egg layed at the end of the season.

Each females was capture 4 times during the season and each time we measured the maximum flying speed using a
wind tunnel and exploration using a openfield test.

The data frame has 6 variables:

• ID: Individual identity
• assay_rep: the repeat number of the behavioural assay
• max_speed: maximum flying speed
• exploration:
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• eggs: measure of reproductive succes measured only once per individual
• body_size: individual body size measured on the day of the test

df_dragons <- read.csv("data/dragons.csv")
str(df_dragons)

'data.frame': 320 obs. of 6 variables:
$ ID : chr "S_1" "S_1" "S_1" "S_1" ...
$ assay_rep : int 1 2 3 4 1 2 3 4 1 2 ...
$ max_speed : num 58.7 57.9 64.3 61.4 65.5 ...
$ exploration: num 126 125 127 127 125 ...
$ eggs : int 39 NA NA NA 56 NA NA NA 51 NA ...
$ body_size : num 21.7 21.5 21.3 20.8 25.7 ...

To help with convergence of the model, and also help with parameter interpretation, we will first scale our covariates.

df_dragons <- df_dragons %>%
mutate(
body_size_sc = scale(body_size),
assay_rep_sc = scale(assay_rep, scale = FALSE)

)

8.2.3. Multiple univariate models

We first use the lme4 to determine the proportion of phenotypic variation (adjusted for fixed effects) that is due
to differences among individuals, separately for each trait with repeated measures.

8.2.3.1. Flying speed

Our model includes fixed effects of the assay repeat number (centred) and individual body size (centred and scaled to
standard deviation units), as we wish to control for any systematic effects of these variables on individual behaviour.
Be aware that controlling variables are at your discretion — for example, while we want to characterise among-
individual variance in flying speed after controlling for size effects in this study, others may wish to characterise
among-individual variance in flying speed without such control. Using techniques shown later in the practical,
it would be entirely possible to characterise both among-individual variance in flying speed and in size, and the
among-individual covariance between these measurements.

lmer_f <- lmer(max_speed ~ assay_rep_sc + body_size_sc + (1 | ID),
data = df_dragons

)
par(mfrow = c(1, 3))
plot(resid(lmer_f, type = "pearson") ~ fitted(lmer_f))
qqnorm(residuals(lmer_f))
qqline(residuals(lmer_f))
hist(residuals(lmer_f))
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Figure 8.3.: Checking assumptions of model lmer_f

summary(lmer_f)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: max_speed ~ assay_rep_sc + body_size_sc + (1 | ID)

Data: df_dragons

REML criterion at convergence: 1791.4

Scaled residuals:
Min 1Q Median 3Q Max

-2.3645 -0.6496 -0.1154 0.6463 2.6894

Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 6.951 2.636
Residual 11.682 3.418
Number of obs: 320, groups: ID, 80

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 63.5344 0.3513 78.0954 180.870 <2e-16 ***
assay_rep_sc -0.1519 0.1709 238.9807 -0.889 0.375
body_size_sc 0.4468 0.3445 88.0328 1.297 0.198
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Correlation of Fixed Effects:
(Intr) assy__

assay_rp_sc 0.000
body_siz_sc 0.000 -0.002

Having examined diagnostic plots of the model fit, we can check the model summary. We are interested in the random
effects section of the lme4 model output (specifically the variance component — note that the standard deviation
here is simply the square root of the variance). Evidence for ‘animal personality’ (or ‘consistent among-individual
differences in behaviour’) in the literature is largely taken from the repeatability of behaviorual traits: we can
compute this repeatability (also known as the intraclass correlation coefficient) by dividing the variance in the trait
due to differences among individuals (𝑉𝐼𝐷) by the total phenotypic variance after accounting for the fixed effects
(𝑉𝐼𝐷 + 𝑉𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ).

rep_flying <- as.data.frame(VarCorr(lmer_f)) %>%
select(grp, vcov) %>%
spread(grp, vcov) %>%
mutate(repeatability = ID / (ID + Residual))

rep_flying

Table 8.1.: Variance components and repeatbility for the maximum flying speed of blue dragons
ID Residual repeatability

6.951 11.682 0.373

So we can see that 37.31% of the phenotypic variation in boldness (having controlled for body size and assay repeat
number) is due to differences among individuals.

8.2.3.2. Exploration

lmer_e <- lmer(exploration ~ assay_rep_sc + body_size_sc + (1 | ID),
data = df_dragons

)
par(mfrow = c(1, 3))
plot(resid(lmer_e, type = "pearson") ~ fitted(lmer_e))
qqnorm(residuals(lmer_e))
qqline(residuals(lmer_e))
hist(residuals(lmer_e))
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Figure 8.4.: Checking assumptions of model lmer_e

summary(lmer_e)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: exploration ~ assay_rep_sc + body_size_sc + (1 | ID)

Data: df_dragons

REML criterion at convergence: 1691.2

Scaled residuals:
Min 1Q Median 3Q Max

-2.73290 -0.62520 0.01635 0.55523 2.95896

Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 3.623 1.903
Residual 9.091 3.015
Number of obs: 320, groups: ID, 80

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 127.22524 0.27148 78.08871 468.639 <2e-16 ***
assay_rep_sc -0.07811 0.15076 238.99943 -0.518 0.605
body_size_sc 0.26114 0.26806 85.68180 0.974 0.333
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Correlation of Fixed Effects:
(Intr) assy__

assay_rp_sc 0.000
body_siz_sc 0.000 -0.002

So the model looks good and we can see our estimates for both fixed and random effects. We can now estimate the
repeatbility of exploration.

rep_expl <- as.data.frame(VarCorr(lmer_e)) %>%
select(grp, vcov) %>%
spread(grp, vcov) %>%
mutate(repeatability = ID / (ID + Residual))

rep_expl

Table 8.2.: Variance components and repeatability for exploration behaviour of blue dragons
ID Residual repeatability

3.623 9.091 0.285

Both of traits of interest are repeatable at the among-individual level. So, the remaining question is estimating the
relation between these two traits. Are individuals that are consistently faster than average also more exploratory than
average (and vice versa)?

8.2.3.3. Correlation using BLUPs

Using BLUPs to estimate correlations between traits or to further investigate biological associations can lead to
spurious results and anticonservative hypothesis tests and narrow confidence intervals. Hadfield et al. (2010) discuss
the problem as well as present some alternative method to avoid the problem using Bayesian methods. However, it is
always preferable to use multivariate models when possible.

We need to create a data frame that contain the BLUPs from both univariate models.

df_blups_fe <- merge(
as.data.frame(ranef(lmer_f)),
as.data.frame(ranef(lmer_e)),
by = "grp"

) %>%
mutate(
speed = condval.x,
exploration = condval.y

)

We can now test the correlation among-individual between flying speed and exploration.

121



CHAPTER 8. MULTIVARIATE MIXED MODELS

(cor_blups <- with(df_blups_fe, cor.test(speed, exploration)))

Pearson's product-moment correlation

data: speed and exploration
t = 3.2131, df = 78, p-value = 0.00191
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.1320924 0.5223645
sample estimates:

cor
0.3418867

ggplot(df_blups_fe, aes(x = exploration, y = speed)) +
geom_point() +
labs(xlab = "Exploration (BLUP)", ylab = "Flying speed (BLUP)") +
theme_classic()
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Figure 8.5.: Relation between exploration and flying speed using BLUPs from univariate models

As you can see, we get a positive correlation with a very small p-value (P = 0.00191), indicating that these traits are
involved in a behavioural syndrome. While the correlation itself is fairly weak ($r = 0.342), it appears to be highly
significant, and suggests that individuals that are faster than average also tend to be more exploratory than average.
However, as discussed in Hadfield et al. (2010) and Houslay and Wilson (2017), using BLUPs in this way leads to
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anticonservative significance tests. This is because the error inherent in their prediction is not carried forward from
the lmer models to the subsequent analysis (in this case, a correlation test). To illustrate this point quickly, below we
plot the individual estimates along with their associated standard errors.

ggplot(df_blups_fe, aes(x = exploration, y = speed)) +
geom_point() +
geom_linerange(aes(
xmin = exploration - condsd.x,
xmax = exploration + condsd.x

)) +
geom_linerange(aes(
ymin = speed - condsd.y,
ymax = speed + condsd.y

)) +
labs(
xlab = "Exploration (BLUP +/- SE)",
ylab = "Flying speed (BLUP +/- SE)"

) +
theme_classic()
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Figure 8.6.: Relation between exploration and flying speed using BLUPs from univariate models including +/- SE as
error bars
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8.2.4. Multivariate approach

8.2.4.1. Based on ASRemlR

The correct approach for testing the hypothesised relation between speed and exploration uses both response variables
in a two-trait (‘bivariate’) mixed model. This model estimates the among-individual variance for each response
variable (and the covariance between them). Separate (co)variances are also fitted for the residual variation. The
bivariate model also allows for fixed effects to be fitted on both response variables. We set up our model using the
asreml function call, with our bivariate response variable being exploration and flying speed bound together
using cbind. You will also note that we scale our response variables, meaning that each is centred at their mean
value and standardised to units of 1 standard deviation. This is not essential, but simply makes it easier for the
model to be fit. Scaling the response variables also aids our understanding of the output, as both flying speed and
exploration are now on the same scale.

asreml can be a bit specific sometime and random effects should absolutely be factor and not character or
integer

df_dragons <- df_dragons %>%
mutate(
ID = as.factor(ID),
speed_sc = scale(max_speed),
exploration_sc = scale(exploration)

)

asr_us <- asreml(
cbind(speed_sc, exploration_sc) ~ trait +
trait:assay_rep_sc + trait:body_size_sc,

random = ~ ID:us(trait),
residual = ~ units:us(trait),
data = df_dragons,
maxiter = 100

)

Model fitted using the sigma parameterization.
ASReml 4.1.0 Thu Feb 1 15:38:07 2024

LogLik Sigma2 DF wall cpu
1 -333.105 1.0 634 15:38:07 0.0
2 -303.637 1.0 634 15:38:07 0.0
3 -274.849 1.0 634 15:38:07 0.0
4 -260.243 1.0 634 15:38:07 0.0
5 -256.118 1.0 634 15:38:07 0.0
6 -255.891 1.0 634 15:38:07 0.0
7 -255.889 1.0 634 15:38:07 0.0

On the right hand side of our model formula, we use the trait keyword to specify that this is a multivariate model
— trait itself tells the model to give us the intercept for each trait. We then interact trait with the fixed effects,
assay_rep_sc and body_size_sc, so that we get estimates for the effect of these variables on each of teh 2 traits.
The random effects structure starts with the random effects, where we tell the model to fit an unstructured (us)
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covariance matrix for the grouping variable ID. This means that the variance in exploration due to differences
among individuals, the variance in boldness due to differences among individuals, and the covariance between these
variances will be estimated. Next, we set a structure for the residual variation (residual), which is also sometimes
known as the within-individual variation. As we have repeated measures for both traits at the individual level, we
also set an unstructured covariance matrix, which estimates the residual variance for each trait and also allows the
residuals to covary across the two traits. Finally, we provide the name of the data frame, and a maximum number of
iterations for ASReml to attempt to fit the model. After the model has been fit by ASReml, we can check the fit using
the same type of model diagnostic plots as we use for lme4:

par(mfrow = c(1, 3))
plot(residuals(asr_us) ~ fitted(asr_us))
qqnorm(residuals(asr_us))
qqline(residuals(asr_us))
hist(residuals(asr_us))
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Figure 8.7.: Checking assumptions of model asr_us

The summary part of the ASReml model fit contains a large amount of information, so it is best to look only at
certain parts of it at a single time. While we are not particularly interested in the fixed effects for current purposes,
you can inspect these using the following code to check whether there were any large effects of assay repeat or
body size on either trait:

summary(asr_us, coef = TRUE)$coef.fixed

solution std error z.ratio
trait_speed_sc:body_size_sc 1.040579e-01 0.07972962 1.305135e+00
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trait_exploration_sc:body_size_sc 7.269022e-02 0.07533421 9.649033e-01
trait_speed_sc:assay_rep_sc -3.521261e-02 0.03960492 -8.890967e-01
trait_exploration_sc:assay_rep_sc -2.195541e-02 0.04238056 -5.180538e-01
trait_speed_sc -1.820461e-16 0.08140684 -2.236251e-15
trait_exploration_sc -2.853753e-16 0.07631479 -3.739449e-15

wa <- wald(asr_us, ssType = "conditional", denDF = "numeric")

Model fitted using the sigma parameterization.
ASReml 4.1.0 Thu Feb 1 15:38:08 2024

LogLik Sigma2 DF wall cpu
1 -255.889 1.0 634 15:38:08 0.0
2 -255.889 1.0 634 15:38:08 0.0
Calculating denominator DF

attr(wa$Wald, "heading") <- NULL
wa

$Wald

Df denDF F.inc F.con Margin Pr
trait 2 77.1 0.0000 0.0000 1.00000
trait:assay_rep_sc 2 237.9 0.3955 0.3984 B 0.67184
trait:body_size_sc 2 86.6 0.9871 0.9871 B 0.37679

$stratumVariances
NULL

We can see that there is a separate intercept for both personality traits (no surprise that these are very close to zero,
given that we mean-centred and scaled each trait before fitting the model), and an estimate of the effect of assay
repeat and body size on both traits. None of these appear to be large effects, so let’s move on to the more interesting
parts — the random effects estimates:

summary(asr_us)$varcomp

component std.error z.ratio
ID:trait!trait_speed_sc:speed_sc 0.37333063 0.08607123 4.337461
ID:trait!trait_exploration_sc:speed_sc 0.08838639 0.06067006 1.456837
ID:trait!trait_exploration_sc:exploration_sc 0.28631012 0.07637247 3.748865
units:trait!R 1.00000000 NA NA
units:trait!trait_speed_sc:speed_sc 0.62741689 0.05740281 10.930073
units:trait!trait_exploration_sc:speed_sc 0.32632113 0.04829175 6.757286
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units:trait!trait_exploration_sc:exploration_sc 0.71844189 0.06572780 10.930563
bound %ch

ID:trait!trait_speed_sc:speed_sc P 0
ID:trait!trait_exploration_sc:speed_sc P 0
ID:trait!trait_exploration_sc:exploration_sc P 0
units:trait!R F 0
units:trait!trait_speed_sc:speed_sc P 0
units:trait!trait_exploration_sc:speed_sc P 0
units:trait!trait_exploration_sc:exploration_sc P 0

In the above summary table, we have the among-individual (co)variances listed first (starting with ID), then the
residual (or within-individual) (co)variances (starting with R). You will notice that the variance estimates here are
actually close to the lme4 repeatability estimates, because our response variables were scaled to phenotypic standard
deviations. We can also find the ‘adjusted repeatability’ (i.e., the repeatability conditional on the fixed effects)
for each trait by dividing its among-individual variance estimate by the sum of its among-individual and residual
variances. Here, we use the vpredict function to estimate the repeatability and its standard error for each trait,
conditional on the effects of assay repeat and body size. For this function, we provide the name of the model object,
followed by a name that we want to give the estimate being returned, and a formula for the calculation. Each ‘V’
term in the formula refers to a variance component, using its position in the model summary shown above.

vpredict(asr_us, rep_speed ~ V1 / (V1 + V5))

Estimate SE
rep_speed 0.3730518 0.06124032

vpredict(asr_us, rep_expl ~ V3 / (V3 + V7))

Estimate SE
rep_expl 0.284956 0.06113539

We can also use this function to calculate the estimate and standard error of the correlation from our model
(co)variances. We do this by specifying the formula for the correlation:

(cor_fe <- vpredict(asr_us, cor_expl_speed ~ V2 / (sqrt(V1 * V3))))

Estimate SE
cor_expl_speed 0.2703462 0.1594097

In this case, the estimate is similar (here, slightly lower) than our correlation estimate using BLUPs. However, if we
consider confidence intervals as +/- 1.96 SE around the estimate, the lower bound of the confidence interval would
actually be -0.0421. With confidence intervals straddling zero, we would conclude that this correlation is likely
non-significant. As the use of standard errors in this way is only approximate, we should also test our hypothesis
formally using likelihood ratio tests.
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8.2.4.1.1. Hypothesis testing

We can now test the statistical significance of this correlation directly, by fitting a second model without the among-
individual covariance between our two traits, and then using a likelihood ratio test to determine whether the model
with the covariance produces a better fit. Here, we use the idh structure for our random effects. This stands for
‘identity matrix’ (i.e., with 0s on the off-diagonals) with heterogeneous variances (i.e., the variance components
for our two response traits are allowed to be different from one another). The rest of the model is identical to the
previous version.

asr_idh <- asreml(
cbind(speed_sc, exploration_sc) ~ trait +
trait:assay_rep_sc + trait:body_size_sc,

random = ~ ID:idh(trait),
residual = ~ units:us(trait),
data = df_dragons,
maxiter = 100

)

Model fitted using the sigma parameterization.
ASReml 4.1.0 Thu Feb 1 15:38:08 2024

LogLik Sigma2 DF wall cpu
1 -327.051 1.0 634 15:38:08 0.0
2 -299.874 1.0 634 15:38:08 0.0
3 -273.689 1.0 634 15:38:08 0.0
4 -260.838 1.0 634 15:38:08 0.0
5 -257.331 1.0 634 15:38:08 0.0
6 -257.120 1.0 634 15:38:08 0.0
7 -257.118 1.0 634 15:38:08 0.0

The likelihood ratio test is calculated as twice the difference between model log-likelihoods, on a single degree of
freedom (the covariance term):

(p_biv <- pchisq(2 * (asr_us$loglik - asr_idh$loglik),
df = 1,
lower.tail = FALSE

))

[1] 0.1170385

In sharp contrast to the highly-significant P-value given by a correlation test using BLUPs, here we find no evidence
for a correlation between flying speed and exploration. To better understand why BLUPs produce an anticonservative
p-value in comparison to multivariate models, we should plot the correlation estimates and their confidence intervals.
The confidence intervals are taken directly from the cor.test function for BLUPs, and for ASReml they are calculated
as 1.96 times the standard error from the vpredict function.
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df_cor <- data.frame(
Method = c("ASReml", "BLUPs"),
Correlation = c(as.numeric(cor_fe[1]), cor_blups$estimate),
low = c(as.numeric(cor_fe[1] - 1.96 * cor_fe[2]), cor_blups$conf.int[1]),
high = c(as.numeric(cor_fe[1] + 1.96 * cor_fe[2]), cor_blups$conf.int[2])

)
ggplot(df_cor, aes(x = Method, y = Correlation)) +
geom_point() +
geom_linerange(aes(ymin = low, ymax = high)) +
ylim(-1, 1) +
geom_hline(yintercept = 0, linetype = 2) +
theme_classic()
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Figure 8.8.: Correlation estimates (with CI) using 2 different methods

Here we can clearly see that the BLUPs method - having failed to carry through the error around the predictions of
individual-level estimates - is anticonservative, with small confidence intervals and a correspondingly small P-value
(P = 0.00191). Testing the syndrome directly in a bivariate model that retains all the data, by comparison, enables
us to capture the true uncertainty about the estimate of the correlation. This is reflected in the larger confidence
intervals and, in this case, the non-significant P-value (P = 0.117).

8.2.4.1.2. Conclusions

To conclude, then: we found that the correlation between flying speed and exploration tends to be positive among
female blue dragon. This correlation is not statistically significant, and thus does not provide strong evidence.
However, inappropriate analysis of BLUP extracted from univariate models would lead to a different (erroneous)
conclusion.

129



CHAPTER 8. MULTIVARIATE MIXED MODELS

8.2.4.2. Using MCMCglmm

In this section I present the code needed to fit the model and explain only the specific aspect of fittign and evaluating
the models with MCMCglmm.

To be completed. with more details

First, we need to create a ‘prior’ for our model. We recommend reading up on the use of priors (see the course notes
of MCMCglmm Hadfield 2010); briefly, we use a parameter-expanded prior here that should be uninformative for our
model. One of the model diagnostic steps that should be used later is to check that the model is robust to multiple
prior specifications.

prior_1ex <- list(
R = list(V = diag(2), nu = 0.002),
G = list(G1 = list(
V = diag(2) * 0.02, nu = 3,
alpha.mu = rep(0, 2),
alpha.V = diag(1000, 2, 2)

))
)

mcmc_us <- MCMCglmm(cbind(speed_sc, exploration_sc) ~ trait - 1 +
trait:assay_rep_sc +
trait:body_size_sc,

random = ~ us(trait):ID,
rcov = ~ us(trait):units,
family = c("gaussian", "gaussian"),
prior = prior_1ex,
nitt = 420000,
burnin = 20000,
thin = 100,
verbose = FALSE,
data = df_dragons
)

omar <- par()
par(mar = c(4, 2, 1.5, 2))
plot(mcmc_us$VCV[, c(1, 2, 4)])
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Figure 8.9.: MCMC trace and Posterior distribution of the (co)variance estimates of model mcmc_us

plot(mcmc_us$VCV[, c(5, 6, 8)])
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Figure 8.10.: MCMC trace and Posterior distribution of the (co)variance estimates of model mcmc_us
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par(omar)

summary(mcmc_us)

Iterations = 20001:419901
Thinning interval = 100
Sample size = 4000

DIC: 1596.672

G-structure: ~us(trait):ID

post.mean l-95% CI u-95% CI eff.samp
traitspeed_sc:traitspeed_sc.ID 0.3859 0.22108 0.5699 4000
traitexploration_sc:traitspeed_sc.ID 0.0818 -0.02887 0.2085 4000
traitspeed_sc:traitexploration_sc.ID 0.0818 -0.02887 0.2085 4000
traitexploration_sc:traitexploration_sc.ID 0.2952 0.14846 0.4666 4000

R-structure: ~us(trait):units

post.mean l-95% CI u-95% CI
traitspeed_sc:traitspeed_sc.units 0.6394 0.5273 0.7634
traitexploration_sc:traitspeed_sc.units 0.3351 0.2404 0.4367
traitspeed_sc:traitexploration_sc.units 0.3351 0.2404 0.4367
traitexploration_sc:traitexploration_sc.units 0.7352 0.6058 0.8711

eff.samp
traitspeed_sc:traitspeed_sc.units 3663
traitexploration_sc:traitspeed_sc.units 4000
traitspeed_sc:traitexploration_sc.units 4000
traitexploration_sc:traitexploration_sc.units 3816

Location effects: cbind(speed_sc, exploration_sc) ~ trait - 1 + trait:assay_rep_sc + trait:body_size_sc

post.mean l-95% CI u-95% CI eff.samp
traitspeed_sc 0.0006779 -0.1518332 0.1753289 4000
traitexploration_sc -0.0020681 -0.1512061 0.1486171 4000
traitspeed_sc:assay_rep_sc -0.0350510 -0.1115105 0.0414211 4276
traitexploration_sc:assay_rep_sc -0.0210627 -0.1033344 0.0677792 4184
traitspeed_sc:body_size_sc 0.1049471 -0.0502591 0.2672082 4000
traitexploration_sc:body_size_sc 0.0734641 -0.0813663 0.2167971 4000

pMCMC
traitspeed_sc 0.996
traitexploration_sc 0.986
traitspeed_sc:assay_rep_sc 0.377
traitexploration_sc:assay_rep_sc 0.621
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traitspeed_sc:body_size_sc 0.199
traitexploration_sc:body_size_sc 0.346

mcmc_prop_f <- mcmc_us$VCV[, 1] /
(mcmc_us$VCV[, 1] + mcmc_us$VCV[, 5])

plot(mcmc_prop_f)
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Figure 8.11.: Posterior trace and distribution of the repeatability in flying speed

posterior.mode(mcmc_prop_f)

var1
0.3704914

HPDinterval(mcmc_prop_f)

lower upper
var1 0.2514295 0.4929244
attr(,"Probability")
[1] 0.95
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mcmc_prop_e <- mcmc_us$VCV[, 4] /
(mcmc_us$VCV[, 4] + mcmc_us$VCV[, 8])

plot(mcmc_prop_e)
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Figure 8.12.: Posterior trace and distribution of the repeatbility of exploration

posterior.mode(mcmc_prop_e)

var1
0.2971507

HPDinterval(mcmc_prop_e)

lower upper
var1 0.16458 0.4103482
attr(,"Probability")
[1] 0.95

mcmc_cor_fe <- mcmc_us$VCV[, 2] /
sqrt(mcmc_us$VCV[, 1] * mcmc_us$VCV[, 4])

plot(mcmc_cor_fe)
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Figure 8.13.: Posterior trace and distribution of the correlation between flying speed and exploration

posterior.mode(mcmc_cor_fe)

var1
0.2775189

HPDinterval(mcmc_cor_fe)

lower upper
var1 -0.07038747 0.5358468
attr(,"Probability")
[1] 0.95

df_cor[3, 1] <- "MCMCglmm"
df_cor[3, -1] <- c(posterior.mode(mcmc_cor_fe), HPDinterval(mcmc_cor_fe))
rownames(df_cor) <- NULL

ggplot(df_cor, aes(x = Method, y = Correlation)) +
geom_point() +
geom_linerange(aes(ymin = low, ymax = high)) +
ylim(-1, 1) +
geom_hline(yintercept = 0, linetype = 2) +
theme_classic()
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Figure 8.14.: Correlation estimates (with CI) using 3 different methods

Table 8.3.: Correlation (with 95% intervals) between flying speed and exploration estimated with 3 different methods
Method Correlation low high

ASReml 0.270 -0.042 0.583
BLUPs 0.342 0.132 0.522
MCMCglmm 0.278 -0.070 0.536

8.2.5. Happy multivariate models

Figure 8.15.: A female blue dragon of the West
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9. Random regression and character state approaches

9.1. Lecture

Amazing beasties and crazy animals

Figure 9.1.: Dream pet dragon

9.2. Practical

In this practical, we will revisit our analysis on unicorn aggressivity. Honestly, we can use any other data with
repeated measures for this exercise but I just  unicorns.

9.2.1. R packages needed

First we load required libraries

library(lme4)
library(tidyverse)
library(broom.mixed)
library(asreml)
library(MCMCglmm)
library(bayesplot)
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9.2.2. Refresher on unicorn aggression

In the previous, practical on linear mixed models, we simply explored the differences among individuals in their
mean aggression (Intercept), but we assumed that the response to the change in aggression with the opponent size
(i.e. plasticity) was the same for all individuals. However, this plastic responses can also vary amon individuals.
This is called IxE, or individual by environment interaction. To test if individuals differ in their plasticity we can
use a random regression, whcih is simply a mixed-model where we fit both a random intercept and a random slope
effect.

Following analysis from the previous pratical, our model of interest using scaled covariate was:

aggression ~ opp_size + body_size_sc + assay_rep_sc + block
+ (1 | ID)

We should start by loading the data and refitting the model using lmer().

unicorns <- read.csv("data/unicorns_aggression.csv")
unicorns <- unicorns %>%
mutate(
body_size_sc = scale(body_size),
assay_rep_sc = scale(assay_rep, scale = FALSE)

)

m_mer <- lmer(
aggression ~ opp_size + body_size_sc + assay_rep_sc + block

+ (1 | ID),
data = unicorns

)
summary(m_mer)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: aggression ~ opp_size + body_size_sc + assay_rep_sc + block +

(1 | ID)
Data: unicorns

REML criterion at convergence: 1136.5

Scaled residuals:
Min 1Q Median 3Q Max

-2.85473 -0.62831 0.02545 0.68998 2.74064

Random effects:
Groups Name Variance Std.Dev.
ID (Intercept) 0.02538 0.1593
Residual 0.58048 0.7619
Number of obs: 480, groups: ID, 80
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Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 9.00181 0.03907 78.07315 230.395 <2e-16 ***
opp_size 1.05141 0.04281 396.99857 24.562 <2e-16 ***
body_size_sc 0.03310 0.03896 84.21144 0.850 0.398
assay_rep_sc -0.05783 0.04281 396.99857 -1.351 0.177
block -0.02166 0.06955 397.00209 -0.311 0.756
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr) opp_sz bdy_s_ assy__

opp_size 0.000
body_siz_sc 0.000 0.000
assay_rp_sc 0.000 -0.100 0.000
block 0.000 0.000 0.002 0.000

We can now plot the predictions for each of our observations and plot for the observed and the fitted data for each
individuals. Todo so we will use the augment() function from the broom.mixed.

Below, we plot the raw data for each individual in one panel, with the fitted slopes in a second panel. Because we
have 2 blocks of data, and block is fitted as a fixed effect, for ease of presentation we need to either select only 1
block for representation, take teh avaerage over the block effect or do a more complex graph with the two blocks.
Here I have selected only one of the blocks for this plot

pred_m_mer <- augment(m_mer) %>%
select(ID, block, opp_size, .fitted, aggression) %>%
filter(block == -0.5) %>%
gather(
type, aggression,
`.fitted`:aggression

)
ggplot(pred_m_mer, aes(x = opp_size, y = aggression, group = ID)) +
geom_line(alpha = 0.3) +
theme_classic() +
facet_grid(. ~ type)
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Figure 9.2.: Predicted (from m_mer) and observed value of aggression as a function of opponent size in unicorns

This illustrates the importance of using model predictions to see whether the model actually fits the individual-level
data well or not — while the diagnostic plots looked fine, and the model captures mean plasticity, here we can see
that the model really doesn’t fit the actual data very well at all.

9.2.3. Random regression

9.2.3.1. with lme4

rr_mer <- lmer(
aggression ~ opp_size + body_size_sc + assay_rep_sc + block
+ (1 + opp_size | ID),
data = unicorns

)

pred_rr_mer <- augment(rr_mer) %>%
select(ID, block, opp_size, .fitted, aggression) %>%
filter(block == -0.5) %>%
gather(type,aggression, `.fitted`:aggression)

ggplot(pred_rr_mer, aes(x = opp_size, y = aggression, group = ID)) +
geom_line(alpha = 0.3) +
theme_classic() +
facet_grid(. ~ type)
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.fitted aggression
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We can test the improvement of the model fit using the overloaded anova function in R to perform a likelihood ratio
test (LRT):

anova(rr_mer, m_mer, refit = FALSE)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

m_mer 7 1150.477 1179.693 -568.2383 1136.477 NA NA NA
rr_mer 9 1092.356 1129.920 -537.1780 1074.356 62.1206 2 0

We can see here that the LRT uses a chi-square test with 2 degrees of freedom, and indicates that the random
slopes model shows a statistically significant improvement in model fit. The 2df are because there are two additional
(co)variance terms estimated in the random regression model: a variance term for individual slopes, and the covariance
(or correlation) between the slopes and intercepts. Let’s look at those values, and also the fixed effects parameters,
via the model summary:

summary(rr_mer)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: aggression ~ opp_size + body_size_sc + assay_rep_sc + block +

(1 + opp_size | ID)
Data: unicorns

REML criterion at convergence: 1074.4
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Scaled residuals:
Min 1Q Median 3Q Max

-3.04932 -0.59780 -0.02002 0.59574 2.68010

Random effects:
Groups Name Variance Std.Dev. Corr
ID (Intercept) 0.05043 0.2246

opp_size 0.19167 0.4378 0.96
Residual 0.42816 0.6543
Number of obs: 480, groups: ID, 80

Fixed effects:
Estimate Std. Error df t value Pr(>|t|)

(Intercept) 9.00181 0.03902 78.44088 230.707 <2e-16 ***
opp_size 1.05033 0.06123 79.50694 17.153 <2e-16 ***
body_size_sc 0.02725 0.03377 84.34959 0.807 0.422
assay_rep_sc -0.04702 0.03945 387.69415 -1.192 0.234
block -0.02169 0.05973 318.19553 -0.363 0.717
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
(Intr) opp_sz bdy_s_ assy__

opp_size 0.495
body_siz_sc 0.000 0.000
assay_rp_sc 0.000 -0.064 -0.006
block 0.000 0.000 0.002 0.000

9.2.3.2. with asreml

unicorns <- unicorns %>%
mutate( ID = as.factor(ID))

rr_asr <- asreml(
aggression ~ opp_size + body_size_sc + assay_rep_sc + block,
random = ~str(~ ID + ID:opp_size, ~us(2):id(ID)),
residual = ~ units,
data = unicorns,
maxiter = 200

)

Model fitted using the gamma parameterization.
ASReml 4.1.0 Thu Feb 1 15:44:20 2024

LogLik Sigma2 DF wall cpu
1 -109.426 0.463232 475 15:44:20 0.0
2 -105.050 0.454593 475 15:44:20 0.0
3 -101.814 0.443662 475 15:44:20 0.0
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4 -100.814 0.433873 475 15:44:20 0.0
5 -100.683 0.428596 475 15:44:20 0.0
6 -100.682 0.428170 475 15:44:20 0.0

plot(rr_asr)
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summary(rr_asr, coef = TRUE)$coef.fixed

solution std error z.ratio
block -0.02168725 0.05973354 -0.3630665
assay_rep_sc -0.04702032 0.03944594 -1.1920191
body_size_sc 0.02725092 0.03377443 0.8068506
opp_size 1.05032703 0.06123110 17.1534907
(Intercept) 9.00181250 0.03901766 230.7112239

wa <- wald(rr_asr, ssType = "conditional", denDF = "numeric")

Model fitted using the gamma parameterization.
ASReml 4.1.0 Thu Feb 1 15:44:20 2024

LogLik Sigma2 DF wall cpu
1 -100.682 0.428168 475 15:44:20 0.0
2 -100.682 0.428168 475 15:44:20 0.0
Calculating denominator DF
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attr(wa$Wald, "heading") <- NULL
wa

$Wald

Df denDF F.inc F.con Margin Pr
(Intercept) 1 78.3 65490 53230 0.00000
opp_size 1 79.5 293 294 A 0.00000
body_size_sc 1 84.3 1 1 A 0.42202
assay_rep_sc 1 387.6 1 1 A 0.23398
block 1 318.1 0 0 A 0.71680

$stratumVariances
df Variance ID+ID:opp_size!us(2)_1:1

ID+ID:opp_size!us(2)_1:1 78.00483 0.4790737 5.216311
ID+ID:opp_size!us(2)_2:1 0.00000 0.0000000 0.000000
ID+ID:opp_size!us(2)_2:2 78.94046 1.1937287 0.000000
units!R 318.05470 0.4281680 0.000000

ID+ID:opp_size!us(2)_2:1 ID+ID:opp_size!us(2)_2:2
ID+ID:opp_size!us(2)_1:1 -3.301137 0.5221955
ID+ID:opp_size!us(2)_2:1 0.000000 0.0000000
ID+ID:opp_size!us(2)_2:2 0.000000 3.9943993
units!R 0.000000 0.0000000

units!R
ID+ID:opp_size!us(2)_1:1 1
ID+ID:opp_size!us(2)_2:1 1
ID+ID:opp_size!us(2)_2:2 1
units!R 1

summary(rr_asr)$varcomp

component std.error z.ratio bound %ch
ID+ID:opp_size!us(2)_1:1 0.05042932 0.02027564 2.487187 P 0
ID+ID:opp_size!us(2)_2:1 0.09458336 0.02400745 3.939751 P 0
ID+ID:opp_size!us(2)_2:2 0.19165924 0.04832059 3.966409 P 0
units!R 0.42816954 0.03395320 12.610582 P 0

rio_asr <- asreml(
aggression ~ opp_size + body_size_sc + assay_rep_sc + block,
random = ~ ID,
residual = ~units,
data = unicorns,
maxiter = 200

)

144



9.2. PRACTICAL

Model fitted using the gamma parameterization.
ASReml 4.1.0 Thu Feb 1 15:44:20 2024

LogLik Sigma2 DF wall cpu
1 -132.611 0.560353 475 15:44:21 0.0
2 -132.106 0.567043 475 15:44:21 0.0
3 -131.796 0.575157 475 15:44:21 0.0
4 -131.743 0.580762 475 15:44:21 0.0
5 -131.742 0.580480 475 15:44:21 0.0

pchisq(2 * (rr_asr$loglik - rio_asr$loglik), 2,
lower.tail = FALSE

)

[1] 3.241026e-14

vpredict(rr_asr, cor_is ~ V2 / (sqrt(V1) * sqrt(V3)))

Estimate SE
cor_is 0.9620736 0.1773965

pred_rr_asr <- as.data.frame(predict(rr_asr,
classify = "opp_size:ID",
levels = list(
"opp_size" =

c(opp_size = -1:1)
)

)$pvals)

Model fitted using the gamma parameterization.
ASReml 4.1.0 Thu Feb 1 15:44:21 2024

LogLik Sigma2 DF wall cpu
1 -100.682 0.428168 475 15:44:21 0.1
2 -100.682 0.428168 475 15:44:21 0.0
3 -100.682 0.428168 475 15:44:21 0.0

p_rr <- ggplot(pred_rr_asr, aes(x = opp_size,
y = predicted.value,
group = ID)) +
geom_line(alpha = 0.2) +
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scale_x_continuous(breaks = c(-1, 0, 1)) +
labs(
x = "Opponent size (SDU)",
y = "Aggression"

) +
theme_classic()

p_rr
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9.2.3.3. with MCMCglmm

prior_RR <- list(
R = list(V = 1, nu = 0.002),
G = list(
G1 = list(V = diag(2)*0.02, nu = 3,

alpha.mu = rep(0, 2),
alpha.V= diag(1000, 2, 2))))
rr_mcmc <- MCMCglmm(
aggression ~ opp_size + assay_rep_sc + body_size_sc + block,
random = ~ us(1 + opp_size):ID,
rcov = ~ units,

family = "gaussian",
prior = prior_RR,
nitt=750000,
burnin=50000,
thin=350,
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verbose = FALSE,
data = unicorns,
pr = TRUE,
saveX = TRUE, saveZ = TRUE)

omar <- par()
par(mar = c(4, 2, 1.5, 2))
plot(rr_mcmc$VCV)
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par(omar)

Warning in par(omar): graphical parameter "cin" cannot be set

Warning in par(omar): graphical parameter "cra" cannot be set

Warning in par(omar): graphical parameter "csi" cannot be set

Warning in par(omar): graphical parameter "cxy" cannot be set

Warning in par(omar): graphical parameter "din" cannot be set

Warning in par(omar): graphical parameter "page" cannot be set

posterior.mode(rr_mcmc$VCV[, "opp_size:opp_size.ID"]) # mean

var1
0.174148

HPDinterval(rr_mcmc$VCV[, "opp_size:opp_size.ID"])

lower upper
var1 0.1092903 0.3067066
attr(,"Probability")
[1] 0.95

rr_cor_mcmc <- rr_mcmc$VCV[, "opp_size:(Intercept).ID"] /
(sqrt(rr_mcmc$VCV[, "(Intercept):(Intercept).ID"]) *
sqrt(rr_mcmc$VCV[, "opp_size:opp_size.ID"]))

posterior.mode(rr_cor_mcmc)

var1
0.8305619
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HPDinterval(rr_cor_mcmc)

lower upper
var1 0.5098244 0.9797991
attr(,"Probability")
[1] 0.95

df_rand <- cbind(unicorns,
rr_fit = predict(rr_mcmc, marginal = NULL)

) %>%
select(ID, opp_size, rr_fit, aggression) %>%
group_by(ID, opp_size) %>%
summarise(
rr_fit = mean(rr_fit),
aggression = mean(aggression)

) %>%
gather(
Type, Value,
rr_fit:aggression

)

`summarise()` has grouped output by 'ID'. You can override using the `.groups`
argument.

# Plot separate panels for individual lines of each type
ggplot(df_rand, aes(x = opp_size, y = Value, group = ID)) +
geom_line(alpha = 0.3) +
scale_x_continuous(breaks = c(-1, 0, 1)) +
theme_classic() +
facet_grid(. ~ Type)
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Table 9.2.: Variance estimated from random regression models using 3 different softwares
Method v_int cov v_sl v_r

lmer 0.0504347 0.0945863 0.1916653 0.4281625
asreml 0.0504293 0.0945834 0.1916592 0.4281695
MCMCglmm 0.0511152 0.0725605 0.1741480 0.4046411

9.2.4. Character-State approach

Need to pivot to a wider format

unicorns_cs <- unicorns %>%
select(ID, body_size, assay_rep, block, aggression, opp_size) %>%
mutate(
opp_size = recode(as.character(opp_size), "-1" = "s", "0" = "m", "1" = "l")

) %>%
dplyr::rename(agg = aggression) %>%
pivot_wider(names_from = opp_size, values_from = c(agg, assay_rep)) %>%
mutate(
body_size_sc = scale(body_size),
opp_order = as.factor(paste(assay_rep_s, assay_rep_m, assay_rep_l, sep = "_"))

)
str(unicorns_cs)

tibble [160 x 11] (S3: tbl_df/tbl/data.frame)
$ ID : Factor w/ 80 levels "ID_1","ID_10",..: 1 1 2 2 3 3 4 4 5 5 ...
$ body_size : num [1:160] 206 207 283 288 229 ...
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$ block : num [1:160] -0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 ...
$ agg_s : num [1:160] 7.02 8.44 7.73 8.08 8.06 8.16 8.16 8.51 7.59 6.67 ...
$ agg_l : num [1:160] 10.67 10.51 10.81 10.67 9.77 ...
$ agg_m : num [1:160] 10.22 8.95 9.43 9.46 7.63 ...
$ assay_rep_s : int [1:160] 1 3 2 2 1 1 3 3 1 1 ...
$ assay_rep_l : int [1:160] 2 2 1 1 2 2 2 1 2 2 ...
$ assay_rep_m : int [1:160] 3 1 3 3 3 3 1 2 3 3 ...
$ body_size_sc: num [1:160, 1] -1.504 -1.456 0.988 1.143 -0.76 ...
..- attr(*, "scaled:center")= num 253
..- attr(*, "scaled:scale")= num 31.1
$ opp_order : Factor w/ 6 levels "1_2_3","1_3_2",..: 2 5 4 4 2 2 5 6 2 2 ...

head(unicorns_cs)

# A tibble: 6 x 11
ID body_size block agg_s agg_l agg_m assay_rep_s assay_rep_l assay_rep_m
<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int> <int>

1 ID_1 206. -0.5 7.02 10.7 10.2 1 2 3
2 ID_1 207. 0.5 8.44 10.5 8.95 3 2 1
3 ID_10 283. -0.5 7.73 10.8 9.43 2 1 3
4 ID_10 288 0.5 8.08 10.7 9.46 2 1 3
5 ID_11 229. -0.5 8.06 9.77 7.63 1 2 3
6 ID_11 236. 0.5 8.16 10.8 8.23 1 2 3
# i 2 more variables: body_size_sc <dbl[,1]>, opp_order <fct>

cs_asr <- asreml(
cbind(agg_s, agg_m, agg_l) ~ trait + trait:body_size_sc +
trait:block +
trait:opp_order,

random =~ ID:us(trait),
residual =~ units:us(trait),
data = unicorns_cs,
maxiter = 200

)

Model fitted using the sigma parameterization.
ASReml 4.1.0 Thu Feb 1 15:46:46 2024

LogLik Sigma2 DF wall cpu
1 -150.172 1.0 456 15:46:46 0.0
2 -129.658 1.0 456 15:46:46 0.0
3 -110.454 1.0 456 15:46:46 0.0
4 -101.879 1.0 456 15:46:46 0.0
5 -100.092 1.0 456 15:46:46 0.0
6 -100.054 1.0 456 15:46:46 0.0
7 -100.054 1.0 456 15:46:46 0.0
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plot(residuals(cs_asr) ~ fitted(cs_asr))
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qqnorm(residuals(cs_asr))
qqline(residuals(cs_asr))
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hist(residuals(cs_asr))

Histogram of residuals(cs_asr)
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summary(cs_asr, all = T)$coef.fixed

NULL

wa <- wald(cs_asr, ssType = "conditional", denDF = "numeric")

Model fitted using the sigma parameterization.
ASReml 4.1.0 Thu Feb 1 15:46:47 2024

LogLik Sigma2 DF wall cpu
1 -100.054 1.0 456 15:46:47 0.0
2 -100.054 1.0 456 15:46:47 0.0
Calculating denominator DF

attr(wa$Wald, "heading") <- NULL
wa

$Wald

Df denDF F.inc F.con Margin Pr
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trait 3 73.2 21080.0 21080.0 0.00000
trait:body_size_sc 3 86.6 0.4 0.5 B 0.68324
trait:block 3 75.2 0.6 0.3 B 0.82418
trait:opp_order 15 240.5 1.3 1.3 B 0.23282

$stratumVariances
NULL

summary(cs_asr)$varcomp[, c("component", "std.error")]

component std.error
ID:trait!trait_agg_s:agg_s 0.192959991 0.06321872
ID:trait!trait_agg_m:agg_s -0.168519644 0.05085583
ID:trait!trait_agg_m:agg_m 0.245594370 0.07096325
ID:trait!trait_agg_l:agg_s -0.151990204 0.05660748
ID:trait!trait_agg_l:agg_m 0.158418588 0.06374995
ID:trait!trait_agg_l:agg_l 0.312548090 0.09125168
units:trait!R 1.000000000 NA
units:trait!trait_agg_s:agg_s 0.318089965 0.05198135
units:trait!trait_agg_m:agg_s 0.010362390 0.03695483
units:trait!trait_agg_m:agg_m 0.322379911 0.05248291
units:trait!trait_agg_l:agg_s -0.009311656 0.04168455
units:trait!trait_agg_l:agg_m 0.159240476 0.04569305
units:trait!trait_agg_l:agg_l 0.405942147 0.06679700

cs_idh_asr <- asreml(
cbind(agg_s, agg_m, agg_l) ~ trait + trait:body_size_sc +
trait:block +
trait:opp_order,

random = ~ ID:idh(trait),
residual = ~ units:us(trait),
data = unicorns_cs,
maxiter = 200

)

Model fitted using the sigma parameterization.
ASReml 4.1.0 Thu Feb 1 15:46:47 2024

LogLik Sigma2 DF wall cpu
1 -147.068 1.0 456 15:46:47 0.0
2 -131.268 1.0 456 15:46:47 0.0
3 -116.908 1.0 456 15:46:47 0.0
4 -110.996 1.0 456 15:46:47 0.0
5 -109.905 1.0 456 15:46:47 0.0
6 -109.866 1.0 456 15:46:47 0.0
7 -109.863 1.0 456 15:46:47 0.0
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pchisq(2 * (cs_asr$loglik - cs_idh_asr$loglik), 3,
lower.tail = FALSE

)

[1] 0.0002038324

vpredict(cs_asr, cor_S_M ~ V2 / (sqrt(V1) * sqrt(V3)))

Estimate SE
cor_S_M -0.7741189 0.1869789

vpredict(cs_asr, cor_M_L ~ V5 / (sqrt(V3) * sqrt(V6)))

Estimate SE
cor_M_L 0.5717926 0.1469504

vpredict(cs_asr, cor_S_L ~ V4 / (sqrt(V1) * sqrt(V6)))

Estimate SE
cor_S_L -0.6189044 0.1912133

vpredict(cs_asr, prop_S ~ V1 / (V1 + V8))

Estimate SE
prop_S 0.3775756 0.09950306

vpredict(cs_asr, prop_M ~ V3 / (V3 + V10))

Estimate SE
prop_M 0.432404 0.0934477
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vpredict(cs_asr, prop_L ~ V6 / (V6 + V13))

Estimate SE
prop_L 0.4350067 0.09498512

init_CS_cor1_tri <- c(
0.999,
0.999, 0.999,
1, 1, 1

)
names(init_CS_cor1_tri) <- c(
"F",
"F", "F",
"U", "U", "U"

)
cs_asr_cor1_tri <- asreml(
cbind(agg_s, agg_m, agg_l) ~ trait + trait:body_size_sc +
trait:block +
trait:opp_order,

random = ~ ID:corgh(trait, init = init_CS_cor1_tri),
residual = ~ units:us(trait),
data = unicorns_cs,
maxiter = 500
)

Model fitted using the sigma parameterization.
ASReml 4.1.0 Thu Feb 1 15:46:47 2024

LogLik Sigma2 DF wall cpu
1 -228.016 1.0 456 15:46:47 0.0 (3 restrained)
2 -150.014 1.0 456 15:46:47 0.0
3 -129.580 1.0 456 15:46:47 0.0
4 -119.992 1.0 456 15:46:47 0.0 (1 restrained)
5 -116.907 1.0 456 15:46:47 0.0 (1 restrained)
6 -115.772 1.0 456 15:46:47 0.0
7 -115.647 1.0 456 15:46:47 0.0
8 -115.588 1.0 456 15:46:47 0.0
9 -115.533 1.0 456 15:46:47 0.0
10 -115.479 1.0 456 15:46:47 0.0
11 -115.427 1.0 456 15:46:47 0.0
12 -115.378 1.0 456 15:46:47 0.0
13 -115.331 1.0 456 15:46:47 0.0
14 -115.289 1.0 456 15:46:47 0.0
15 -115.251 1.0 456 15:46:47 0.0
16 -115.217 1.0 456 15:46:47 0.0
17 -115.188 1.0 456 15:46:47 0.0
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18 -115.162 1.0 456 15:46:47 0.0
19 -115.141 1.0 456 15:46:47 0.0
20 -115.122 1.0 456 15:46:47 0.0
21 -115.107 1.0 456 15:46:47 0.0
22 -115.093 1.0 456 15:46:47 0.0
23 -115.082 1.0 456 15:46:47 0.0
24 -115.073 1.0 456 15:46:47 0.0 (1 restrained)
25 -115.064 1.0 456 15:46:47 0.0
26 -115.064 1.0 456 15:46:47 0.0

pchisq(2 * (cs_asr$loglik - cs_asr_cor1_tri$loglik),
3,
lower.tail = FALSE

)

[1] 1.367792e-06

df_CS_pred <- as.data.frame(predict(cs_asr,
classify = "trait:ID"

)$pvals)

Model fitted using the sigma parameterization.
ASReml 4.1.0 Thu Feb 1 15:46:47 2024

LogLik Sigma2 DF wall cpu
1 -100.054 1.0 456 15:46:47 0.1
2 -100.054 1.0 456 15:46:47 0.0
3 -100.054 1.0 456 15:46:47 0.0

# Add numeric variable for easier plotting
# of opponent size
df_CS_pred <- df_CS_pred %>%
mutate(sizeNum = ifelse(trait == "agg_s", -1,
ifelse(trait == "agg_m", 0, 1)

))
p_cs <- ggplot(df_CS_pred, aes(
x = sizeNum,
y = predicted.value,
group = ID

)) +
geom_line(alpha = 0.2) +
scale_x_continuous(breaks = c(-1, 0, 1)) +
labs(
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x = "Opponent size (SDU)",
y = "Aggression"

) +
theme_classic()
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unicorns <- arrange(unicorns, opp_size, by_group = ID)
p_obs <- ggplot(unicorns[unicorns$block==-0.5,], aes(x = opp_size, y = aggression, group = ID)) +
geom_line(alpha = 0.3) +
scale_x_continuous(breaks = c(-1, 0, 1)) +
labs(
x = "Opponent size (SDU)",
y = "Aggression"

) +
ggtitle("Observed") +
ylim(5.9, 12) +
theme_classic()

p_rr <- p_rr + ggtitle("Random regression") + ylim(5.9, 12)
p_cs <- p_cs + ggtitle("Character-State") + ylim(5.9, 12)
p_obs + p_rr + p_cs

Warning: Removed 2 rows containing missing values (`geom_line()`).
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9.2.5. From random regression to character-state

var_mat_asr <- function(model, var_names, pos){
size <- length(var_names)
v_out <- matrix(NA, ncol = size, nrow = size)
rownames(v_out) <- var_names
colnames(v_out) <- var_names
v_out[upper.tri(v_out, diag = TRUE)] <- summary(model)$varcomp[pos, 1]
v_out <- forceSymmetric(v_out, uplo = "U")
as.matrix(v_out)

}
v_id_rr <- var_mat_asr(rr_asr, c("v_int", "v_sl"), 1:3)
knitr::kable(v_id_rr, digits = 3)

v_int v_sl

v_int 0.050 0.095
v_sl 0.095 0.192

v_id_cs <- var_mat_asr(cs_asr, c("v_s", "v_m", "v_l"), 1:6)
knitr::kable(v_id_cs, digits = 3)
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v_s v_m v_l

v_s 0.193 -0.169 -0.152
v_m -0.169 0.246 0.158
v_l -0.152 0.158 0.313

We also need to make a second matrix, let’s call it Q (no particular reason, pick something else if you want). This
is going to contain the values needed to turn an individual’s intercept (mean) and slope (plasticity) deviations into
estimates of environment-specific individual merit in a character state model.

What do we mean by this? Well if an individual i has an intercept deviation of IDint(i) and a slope deviation of IDslp(i)
for a given value of the environment opp_size we might be interested in:

IDi = (1 x IDint(i)) + (opp_size x IDslp(i))

We want to look at character states representing the three observed values of opp_size here so

Q <- as.matrix(cbind(c(1, 1, 1),
c(-1, 0, 1)))

Then we can generate our among-individual covariance matrix environment specific aggresiveness, which we can
call ID_cs_rr by matrix multiplication:

ID_cs_rr<- Q %*% v_id_rr %*%t(Q) #where t(Q) is the transpose of Q
#and %*% is matrix multiplication

ID_cs_rr #rows and columns correspond to aggressiveness at opp_size=-1,0,1 in that order

[,1] [,2] [,3]
[1,] 0.05292184 -0.04415404 -0.1412299
[2,] -0.04415404 0.05042932 0.1450127
[3,] -0.14122993 0.14501267 0.4312553

cov2cor(ID_cs_rr) #Converting to a correlation scale

[,1] [,2] [,3]
[1,] 1.0000000 -0.8546956 -0.9348503
[2,] -0.8546956 1.0000000 0.9833253
[3,] -0.9348503 0.9833253 1.0000000

cov2cor(v_id_cs)

v_s v_m v_l
v_s 1.0000000 -0.7741189 -0.6189044
v_m -0.7741189 1.0000000 0.5717926
v_l -0.6189044 0.5717926 1.0000000
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9.2.6. Conclusions

9.2.7. Happy multivariate models

Figure 9.3.: A female blue dragon of the West
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10. Beyond P < 0.05

cite a bunch a must read paper on the subject and maybe summarize the big point of Do and Don’t

library(ggplot2)

alpha <- 0.05
beta <- 0.2

p_h1_true <- seq(0, 1, length = 100)
p_fp <- alpha * (1 - p_h1_true) /
(alpha * (1 - p_h1_true) + (1 - beta) * p_h1_true)

p_fn <- beta * p_h1_true /
(beta * p_h1_true + (1 - alpha) * (1 - p_h1_true))

dat <- rbind(
data.frame(p_h1 = p_h1_true, prob = p_fp, result = "positive" ),
data.frame(p_h1 = p_h1_true, prob = p_fn, result = "negative")

)
ggplot(dat, aes(x = p_h1, y = prob, colour = result)) +
geom_line() +
geom_vline(xintercept = 0.5, linetype = 2) +
xlab("Probability alternative hypothesis is true") +
ylab("Probabilitity of false results") +
xlim(0, 1) +
theme_classic()
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A. R

Need to write something about R

We also use various methods for manipulating and visualising data frames using the tidyverse (Wickham et al.
2019) (including tidyr, dplyr, ggplot2 etc). You can get more details on their use can be found at in the Book R
for Data Science (Wickham and Grolemund 2016) which is freely available as a bookdown website here.
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