
On the R-way to hell
Statistical analysis in the marvelous world of R

Julien Martin



Do what you think is interesting,
do something that you think is fun and worthwhile,
because otherwise you won’t do it well anyway.

—Brian W. Kernighan



Table of contents

Preface ii
The aim of this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Multilingual book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
How to use this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Who are we ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Thanks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Image credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Citing the book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Course associated reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Hex Sticker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

I. Using R 1

1. Getting started 2
Some R pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1. Installing R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2. Installing an IDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2. IDE orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1. RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2. VSCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3. Working directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4. Directory structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5. Projects organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1. RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.5.2. VSCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6. File names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.7. Script documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.8. R style guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.9. Backing up projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.10. Citing R and R packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2. Some R basics 27
2.1. Important considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2. First step in the console . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3. Objects in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1. Creating objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2. Naming objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4. Using functions in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5. Working with vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.1. Extracting elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

i



Table of contents

2.5.2. Replacing elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.3. Ordering elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.4. Vectorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.5. Missing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6. Getting help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.1. R help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6.2. Other sources of help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7. Saving stuff in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8. R packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.8.1. Using packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.8.2. Installing R packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3. Data 55
3.1. Data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2. Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1. Scalars and vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.2. Matrices and arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.3. Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.4. Data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3. Importing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.1. Saving files to import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.2. Import functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.3. Common import frustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.4. Other import options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4. Wrangling data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4.1. Positional indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.2. Logical indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.4.3. Ordering data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.4.4. Adding columns and rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.4.5. Merging data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.4.6. Reshaping data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5. Introduction to the tidyverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.6. Summarising data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.7. Exporting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.7.1. Export functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.7.2. Other export functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4. Figures 112
4.1. Simple base R plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.2. ggplot2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.3. Simple plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.3.1. Scatterplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.2. Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.3.3. Box plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.3.4. Violin plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
4.3.5. Dot charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.3.6. Pairs plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.3.7. Coplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.3.8. Summary of plot function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

ii



Table of contents

4.4. Multiple graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.4.1. Base R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.4.2. ggplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.5. Customising ggplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.6. Exporting plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5. Programming 145
5.1. Looking behind the curtain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.2. Functions in R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.3. Conditional statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.4. Combining logical operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.5. Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.5.1. For loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.5.2. While loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.5.3. When to use a loop? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.5.4. If not loops, then what? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6. Reproducible reports with Quarto 169
6.1. What is R markdown / Quarto? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.1.1. R Markdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
6.1.2. Quarto? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.2. Why use Quarto? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.3. Get started with Quarto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3.1. Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.3.2. Create a Quarto document, .qmd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.4. Quarto document (.qmd) anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.4.1. YAML header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.4.2. Formatted text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.4.1. Code chunks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.4.2. Inline R code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.4.3. Images and photos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
6.4.4. Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.4.5. Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.4.6. Cross-referencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.4.7. Citations and bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.5. Some tips and tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
6.6. Further Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.7. Practical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

6.7.1. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.7.2. Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Example of output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7. Version control with Git and GitHub 216
7.1. What is version control? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.2. Why use version control? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.3. What is Git and GitHub? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.4. Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

7.4.1. Install Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
7.4.2. Configure Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.4.3. Configure RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

iii



Table of contents

7.4.4. Configure VSCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.4.5. Register a GitHub account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

7.5. Setting up a project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.5.1. in RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.5.2. Option 1 - GitHub first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.5.3. Option 2 - RStudio first . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.5.4. in VSCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

7.6. Using Git with RStudio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.6.1. Tracking changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.6.2. Commit history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
7.6.3. Reverting changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

7.7. Using Git with VSCode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Tracking changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Commit History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Reverting changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

7.8. Collaborate with Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.9. Git tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.10. Further resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
7.11. Practical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

7.11.1. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
7.11.2. Information of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
7.11.3. Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
7.11.4. Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

II. Fundamentals of stats 262

8. Power Analysis 263
8.1. The theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

8.1.1. What is power? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
8.1.2. Why do a power analysis? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
8.1.3. Factors affecting power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
8.1.4. Types of power analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
8.1.5. How to calculate effect size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

8.2. Practical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
8.2.1. What is G*Power? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
8.2.2. How to use G*Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
8.2.3. Power analysis for a t-test on two independent means . . . . . . . . . . . . . . . . . . . . 267
8.2.4. Post-hoc analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
8.2.5. A priori analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
8.2.6. Sensitivity analysis - Calculate the detectable effect size . . . . . . . . . . . . . . . . . . 278

8.3. Important points to remember . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

III. Linear models 281

9. Correlation and simple linear regression 282
9.1. R packages and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
9.2. Scatter plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
9.3. Data transformations and the product-moment correlation . . . . . . . . . . . . . . . . . . . . . . 286

iv



Table of contents

9.4. Testing the significance of correlations and Bonferroni probabilities . . . . . . . . . . . . . . . . . 289
9.5. Non-parametric correlations: Spearman’s rank and Kendall’s 𝜏 . . . . . . . . . . . . . . . . . . . 290
9.6. Simple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

9.6.1. Testing regression assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
9.6.2. Formal tests of regression assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

9.7. Data transformations in regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
9.8. Dealing with outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
9.9. Quantifying effect size in regression and power analysis . . . . . . . . . . . . . . . . . . . . . . . 307

9.9.1. Power to detect a given slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
9.9.2. Sample size required to achieve desired power . . . . . . . . . . . . . . . . . . . . . . . . 311

9.10. Bootstrapping the simple linear regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

10.Two - sample comparisons 318
10.1. R packages and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
10.2. Visual examination of sample data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
10.3. Comparing means of two independent samples: parametric and non-parametric comparisons . . . . 322
10.4. Bootstrap and permutation tests to compare 2 means . . . . . . . . . . . . . . . . . . . . . . . . 327

10.4.1. Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
10.4.2. Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

10.5. Comparing the means of paired samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
10.6. Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

11.One-way ANOVA 338
11.1. R packages and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
11.2. One-way ANOVA with multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

11.2.1. Visualize data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
11.2.2. Testing the assumptions of a parametric ANOVA . . . . . . . . . . . . . . . . . . . . . . 343
11.2.3. Performing the ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
11.2.4. Performing multiple comparisons of means test . . . . . . . . . . . . . . . . . . . . . . . 346

11.3. Data transformations and non-parametric ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . 353
11.4. Dealing with outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
11.5. Permutation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

12.Multiway ANOVA: factorial and nested designs 359
12.1. R packages and data needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
12.2. Two-way factorial design with replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

12.2.1. Fixed effects ANOVA (Model I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
12.2.2. Mixed effects ANOVA (Model III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369

12.3. 2-way factorial ANOVA without replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
12.4. Nested designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
12.5. Two-way non-parametric ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
12.6. Multiple comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
12.7. Test de permutation pour l’ANOVA à deux facteurs de classification . . . . . . . . . . . . . . . . . 387
12.8. Bootstrap for two-way ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

13.Multiple regression 392
13.1. R packages and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
13.2. Points to keep in mind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
13.3. First look at the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
13.4. Multiple regression models from scratch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
13.5. Stepwise multiple regression procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

v



Table of contents

13.6. Detecting multicollinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
13.7. Polynomial regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
13.8. Checking assumptions of a multiple regression model . . . . . . . . . . . . . . . . . . . . . . . . 413
13.9. Visualizing effect size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
13.10.Testing for interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
13.11.Dredging and the information theoretical approach . . . . . . . . . . . . . . . . . . . . . . . . . 423
13.12.Bootstrapping multiple regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
13.13.Permutation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

14.ANCOVA and general linear model 432
14.1. R packages and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
14.2. Linear models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
14.3. ANCOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
14.4. Homogeneity of slopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434

14.4.1. Case 1 - Size as a function of age (equal slopes example) . . . . . . . . . . . . . . . . . . 434
14.4.2. Case 2 - Size as a function of age (different slopes example) . . . . . . . . . . . . . . . . 439

14.5. The ANCOVA model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
14.6. Comparing model fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
14.7. Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
14.8. Permutation test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

IV. Generalized linear models 455

15.Generalized linear model, glm 456
15.1. Lecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

15.1.1. Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
15.2. Practical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

15.2.1. Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
15.2.2. Poisson regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

16.Frequency data and Poisson Regression 473
16.1. R packages and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
16.2. Organizing the data: 3 forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
16.3. Graphs for contingency tables and testing for independence . . . . . . . . . . . . . . . . . . . . . 477
16.4. Log-linear models as an alternative to Chi-square test for contingency tables . . . . . . . . . . . . 481
16.5. Testing an external hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
16.6. Poisson regression to analyze multi-way tables . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
16.7. Exercice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

V. Mixed models 495

17.Introduction to linear mixed models 496
17.1. Lecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

17.1.1. Testing fixed effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496
17.1.2. Shrinkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496

17.2. Practical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
17.2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
17.2.2. R packages needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
17.2.3. The superb wild unicorns of the Scottish Highlands . . . . . . . . . . . . . . . . . . . . . 502

vi



Table of contents

17.2.4. Do unicorns differ in aggressiveness? Your first mixed model . . . . . . . . . . . . . . . . 505
17.2.5. Do unicorns differ in aggressiveness? A better mixed model . . . . . . . . . . . . . . . . 507
17.2.6. What is the repeatability? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
17.2.7. A quick note on uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
17.2.8. An easy way to mess up your mixed models . . . . . . . . . . . . . . . . . . . . . . . . . 521
17.2.9. Happy mixed-modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

18.Introduction to GLMM 525
18.1. Lecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525
18.2. Practical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

18.2.1. Packages and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
18.2.2. The data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526
18.2.3. Specifying fixed and random Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
18.2.4. Look at overall patterns in data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
18.2.5. Choose an error distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
18.2.6. Fitting group-wise GLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
18.2.7. Fitting and evaluating GLMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
18.2.8. Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
18.2.9. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
18.2.10.Happy generalized mixed-modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

19.Random regression and character state approaches 560
19.1. Lecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
19.2. Practical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560

19.2.1. R packages needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
19.2.2. Refresher on unicorn aggression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
19.2.3. Random regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
19.2.4. Character-State approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 576
19.2.5. From random regression to character-state . . . . . . . . . . . . . . . . . . . . . . . . . . 587
19.2.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
19.2.7. Happy multivariate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

20.Multivariate mixed models 590
20.1. Lecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
20.2. Practical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590

20.2.1. R packages needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
20.2.2. The blue dragon of the East . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
20.2.3. Multiple univariate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
20.2.4. Multivariate approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
20.2.5. Happy multivariate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616

VI. Generalized additive models 617

VII.Multivariate analysis 618

VIII.Bayesian approach 619

21.Beyond P < 0.05 620

vii



Table of contents

22.Introduction to Bayesian Inference 621
22.1. Lecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

22.1.1. Bayes’ theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
22.1.2. Intro to MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
22.1.3. Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628

22.2. Practical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
22.2.1. R packages needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
22.2.2. A refresher on unicorn ecology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
22.2.3. MCMCglmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 631
22.2.4. Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640
22.2.5. brms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
22.2.6. Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
22.2.7. Happy Bayesian stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 650

References 651
R packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 653

Appendices 657

A. Data used in this book 657
A.1. All in one zip file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
A.2. All the data files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
A.3. R code used in the book and slides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 658

B. Installing Quarto and LateX 659
B.1. MS Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
B.2. Mac OSX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660
B.3. Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

viii



Preface

Exclamation-Triangle Warning

Book in development. Several sections not developed yet

The aim of this book

The aim of this book is two-fold:

1. introduce you to R, a powerful and flexible interactive environment for statistical computing and research.

2. introduce you to (or reacquaint you with) statistical analysis done in R.

R in itself is not difficult to learn, but as with learning any new language (spoken or computer) the initial learning

curve can be steep and somewhat daunting. It is not intended to cover everything (neither with R not with statistics)

but simply to help you climb the initial learning curve (potentially faster) and provide you with the basic skills (and

confidence!) needed to start your own journey with R and with specific analysis.

Multilingual book

The book is provided as a multilingual book breaking that language barrier and potentially allow to facilitate the

learn of R and its mainly english-speaking environment. We are always looking for volunteers to help developed the

book further and add more languages to the growing list. Please contact us if you want to help

On the web version of the book, use Flag in the navigation bar to switch from one language to another. After switching

to your preferred language, you can of course also download the pdf and epub versions in this language if you want

to using Download.

List of languages:

ix

https://biostats-uottawa.github.io/people.html


Preface

• english (work in progresspublish but need polishing)

• french (in development, waiting for english to be polished)

• spanish (one day maybe)

• … volunteers for more ??

How to use this book

For the best experience we recommend that you read the web version of this book which you can find https://biostats-

uottawa.github.io/Rway.

The web version includes a navbar at the top of the page where you can toggle the sidebars on and off Align-left, search

through the book SEARCH, change the page color Toggle-Off and suggest revisions if you spot a typo or mistake Github. You can also

download Download a pdf and epub versions of the book.

We use a few typographical conventions throughout this book.

R code and the resulting output are presented in code blocks in our book.

2 + 2

[1] 4

Functions in the text are shown with brackets at the end using code font, i.e. mean() or sd() etc.

Objects are shown using code font without the round brackets, i.e. obj1, obj2 etc.

R packages in the text are shown using code font and followed by the icon, i.e. tidyverse .

A series of actions required to access menu commands in RStudio or VSCode are identified as File -> New File ->

R Script which translates to ‘click on the File menu, then click on New File and then select R Script’.

When we refer to IDE (Integrated Development Environment software) later in the text we mean either RStudio of

VScode.

When we refer to .[Rq]md, we mean either R markdown (.Rmd) or Quarto (.qmd) documents and would generally

talk of R markdown documents when referring to either .Rmd or .qmd files.

The manual tries to highlight some part of the text using the following boxes and icons.

x

https://biostats-uottawa.github.io/Rway
https://biostats-uottawa.github.io/Rway


Who are we ?

Fire Exercises

Stuff for you to do

INFO Solutions

R code and explanations

Exclamation-Triangle Warning

warnings

Exclamation Important

important points

INFO Note

notes

Who are we ?

Julien Martin is a Professor at the University of Ottawa working on Evolutionary
Ecology and has discovered R with version 1.8.1 and teaches R since v2.4.0.

• BOOKMARK: uOttawa https://www.uottawa.ca/faculty-science/professors/julien-
martin/, lab page https://juliengamartin.github.io

• Twitter: https://twitter.com/jgamartin
• Github: https://github.com/juliengamartin

Thanks

The first part of the book on using R started as a fork on github from the excellent An introduction to R book by

Douglas, Roos, Mancini, Couto and Lusseau (Douglas 2023). It was forked on April 23rd, 2023 from Alexd106

github repository then modified and updated following my own needs and teaching perspective of R. The content

was neither reviewed nor endorsed by any the previous developers.

xi

https://www.uottawa.ca/faculty-science/professors/julien-martin/
https://www.uottawa.ca/faculty-science/professors/julien-martin/
https://juliengamartin.github.io
https://twitter.com/jgamartin
https://github.com/juliengamartin
https://intro2r.com/
https://github.com/alexd106/Rbook
https://github.com/alexd106/Rbook


Preface

Several parts in the book were based on previous lab manuals for biostatistics classes at uOttawa written by Martin,

Findlay, Morin and Rundle.

Site that provided a lot of information for the book:

• dplyr introduction

• Introduction to gam

• Intoduction to gams by Noam Ross

Image credits

Photos, images and screenshots are from Julien Martin except when indicated in caption.

Cover image was generated via Nightcafe Ai Art generator. Favicon and hex sticker were created from the cover

image.

INFO Note

several screenshot are currently by Alex Douglas and are being redone to abide by the previous statement

License

I share this work under the license License Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-

tional.

Figure 1.: License Creative Commons

If you teach R, feel free to use some or all of the content in this book to help support your own students. The only

thing I ask is that you acknowledge the original source and authors. If you find this book useful or have any comments

or suggestions I would love to hear from you (contact info).

xii

https://dplyr.tidyverse.org/articles/dplyr.html
https://m-clark.github.io/generalized-additive-models/
https://noamross.github.io/gams-in-r-course/
https://creator.nightcafe.studio/creation/P0VHCquzSe5LedOzfxwY?ru=1LIicoDlCUOaydR20fvyG3kYCUp1
https://creator.nightcafe.studio
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


Citing the book

Citing the book

Julien Martin. (2024). On the R-way to hell. A multilingual introduction to R book. Version: 0.6.0 (2024-10-30).DOI:

10.5281/zenodo.13801263

xiii

https://zenodo.org/doi/10.5281/zenodo.13801263


Preface

Course associated reading

Table 1.: Course associated reading for biostatistical course at uOttawa

Chapter BioXx58 Bio8940

Using R

1.-4.

5. Programming

6. Reproducible reports  

7. Version control

Stats fundamentals

all chapters

Linear models

all chapters

Generalized linear models

all chapters  

Mixed models

all chapters

Generalized additive models

all chapters  

Multivariate analysis

all chapters  

Bayesian approach

all chapters

xiv

https://biostats-uottawa.github.io/bioXx58/en/
https://biostats-uottawa.github.io/bio8940


Course associated reading

Suggested  ; mandatory ; expected knowledge (might need a refresher)

xv



Preface

Hex Sticker

xvi



Part I.

Using R

1



Chapter 1
Getting started

Although R is not new, its popularity has increased rapidly over the last 10 years or so (see here). It was originally

created and developed by Ross Ihaka and Robert Gentleman during the 1990’s with the first stable version released

in 2000. Nowadays R is maintained by the R Development Core Team. So, why has R become so popular and why

should you learn how to use it? Some reasons include:

• open source and freely available.

• available for Windows, Mac and Linux operating systems.

• extensive and coherent set of tools for statistical analysis.

• extensive and highly flexible graphical facility capable of producing publication quality figures.

• expanding set of freely available ‘packages’ to extend R’s capabilities.

• extensive support network with numerous online and freely available documents.

All of the reasons above are great reasons to use R. However, in our opinion, the biggest reason to use R is that

it facilitates robust and reproducible research practices. In contrast to more traditional ‘point and click’ software,

writing code ensures you have a permanent and accurate record of all the methods you used (and decisions you

made) for your data analysis. You are then able to share this code (and your data) with other researchers / colleagues

/ reviewers who will be able to reproduce your analysis exactly. This is one of the tenets of open science. We will

cover other topics to facilitate open science throughout this book, including creating reproducible reports (Chapter 6)

and version control (Chapter 7).

In this Chapter we’ll cover:

• how to download and install R and and an IDE on your computer

• give you a brief orientation of the 2 most common IDEs used with R

• some good habits to get into when working on projects

2

http://r4stats.com/articles/popularity/
https://www.r-project.org/contributors.html
https://en.wikipedia.org/wiki/Open_science


Some R pointers

• and finally some advice on documenting your workflow and writing nice readable R code.

Some R pointers

• Use R often and use it regularly. This will help build and maintain all important momentum.

• Learning R is not a memory test. One of advantage of a scripting language is that you will always have your

(well annotated) code to refer back to when you forget how to do something.

• You don’t need to know everything about R to be productive.

• If you get stuck, search online, it’s not cheating and writing a good search query is a skill in itself.

• If you find yourself staring at code for hours trying to figure out why it’s not working then walk away for a few

minutes.

• In R there are many ways to tackle a particular problem. If your code does what you want it to do in a reasonable

time and robustly then don’t worry about it.

• R is just a tool to help you answer your interesting questions. Don’t lose sight of what’s important - your

research question(s) and your data. No amount of skill using R will help if your data collection is fundamentally

flawed or your question vague.

• Recognize that there will be times when things will get a little tough or frustrating. Try to accept these periods

as part of the natural process of learning a new skill (we’ve all been there) and remember, the time and energy

you invest now will be more than payed back in the not too distant future.

Good luck and don’t forget to have fun.

1.1. Installation

1.1.1. Installing R

To get up and running the first thing you need to do is install R. R is freely available for Windows, Mac and Linux

operating systems from the Comprehensive R Archive Network (CRAN) website. For Windows and Mac users we

suggest you download and install the pre-compiled binary versions. There are reasonably comprehensive instruction

to install R for each OS (Windows,Mac or linux).

Whichever operating system you’re using, once you have installed R you need to check its working properly. The

easiest way to do this is to start R by double clicking on the R icon (Windows or Mac) or by typing R into the Console

3

https://cloud.r-project.org
https://cran.r-project.org/bin/windows/
https://cran.r-project.org/bin/macosx/
https://cran.r-project.org/bin/linux/


Chapter 1. Getting started

(Linux). You should see the R Console and you should be able to type R commands into the Console after the

command prompt >. Try typing the following R code and then press enter:

plot(1)

0.6 0.8 1.0 1.2 1.4

0.
6

0.
8

1.
0

1.
2

1.
4

Index

1

Figure 1.1.: Most amazing plot, just useful to test R

A plot with a single point in the center should appear. If you see this, you’re good to go. If not then we suggest you

make a note of any errors produced and then use your preferred search engine to troubleshoot.

1.1.2. Installing an IDE

We strongly recommend to use an Integrated Development Environment (IDE) software to work with R. One simple

and extremely popular IDE is RStudio. An alternative to RStudio is Visual Studio Code, or VSCode. An IDE can be

thought of as an add-on to R which provides a more user-friendly interface, incorporating the R Console, a script

editor and other useful functionality (like R markdown and Git Hub integration).

Fire Caution

You must install R before you install an IDE (see Section 1.1.1 for details).

INFO Note

When we refer to IDE later in the text we mean either RStudio of VScode

4

https://rstudio.com/


1.1. Installation

1.1.2.1. RStudio

RStudio is freely available for Windows, Mac and Linux operating systems and can be downloaded from the RStudio

site. You should select the ‘RStudio Desktop’ version.

1.1.2.2. VSCode

VSCode is freely available for Windows, Mac and Linux operating systems and can be downloaded from the VS

Code site.

In addition you need to install the R extension to VSCode. To make VSCode a true powerhouse for working with R

we strongly recommend you to also install:

• radian: A modern R console that corrects many limitations of the official R terminal and supports many

features such as syntax highlighting and auto-completion.

• VSCode-R-Debugger: A VS Code extension to support R debugging capabilities.

• httpgd: An R package to provide a graphics device that asynchronously serves SVG graphics via HTTP

and WebSockets.

1.1.2.3. Alternatives to RStudio and VSCode

Rather than using an ‘all in one’ IDE many people choose to use R and a separate script editor to write and execute

R code. If you’re not familiar with what a script editor is, you can think of it as a bit like a word processor but

specifically designed for writing code. Happily, there are many script editors freely available so feel free to download

and experiment until you find one you like. Some script editors are only available for certain operating systems and

not all are specific to R. Suggestions for script editors are provided below. Which one you choose is up to you: one

of the great things about R is that YOU get to choose how you want to use R.

1.1.2.3.1. Advanced text editors A light yet efficient way to work with R is using advanced text editors such

as:

• Atom (all operating systems)

• BBedit (Mac OS)

• gedit (Linux; comes with most Linux distributions)

• MacVim (Mac OS)

• Nano (Linux)

5

https://rstudio.com/products/rstudio/download
https://rstudio.com/products/rstudio/download
https://marketplace.visualstudio.com/items?itemName=REditorSupport.r
https://github.com/randy3k/radian
https://marketplace.visualstudio.com/items?itemName=RDebugger.r-debugger
https://cran.r-project.org/web/packages/httpgd/index.html
https://atom.io/
https://www.barebones.com/products/bbedit/
https://wiki.gnome.org/Apps/Gedit
https://github.com/macvim-dev/macvim
https://www.nano-editor.org/


Chapter 1. Getting started

• Notepad++ (Windows)

• Sublime Text (all operating systems)

• vim and its extension NVim-R (Linux)

1.1.2.3.2. Integrated development environments These environments are more powerful than simple text

editors, and are similar to RStudio:

• Emacs and its extension Emacs Speaks Statistics (all operating systems)

• RKWard (Linux)

• Tinn-R (Windows)

1.2. IDE orientation

1.2.1. RStudio

When you open R studio for the first time you should see the following layout (it might look slightly different on a

Windows computer).

Figure 1.2.: R studio main window

The large window (aka pane) on the left is the Console window. The window on the top right is the Environment /

History / Connections pane and the bottom right window is the Files / Plots / Packages / Help / Viewer window.

We will discuss each of these panes in turn below. You can customise the location of each pane by clicking on the

6

https://notepad-plus-plus.org/
https://www.sublimetext.com/
https://www.vim.org/
https://github.com/jalvesaq/Nvim-R
https://www.gnu.org/software/emacs/
https://ess.r-project.org/
https://rkward.kde.org/
https://sourceforge.net/projects/tinn-r/


1.2. IDE orientation

‘Tools’ menu then selecting Global Options –> Pane Layout. You can resize the panes by clicking and dragging the

middle of the window borders in the direction you want. There are a plethora of other ways to customise RStudio.

1.2.1.1. Console

The Console is the workhorse of R. This is where R evaluates all the code you write. You can type R code directly

into the Console at the command line prompt, >. For example, if you type 2 + 2 into the Console you should obtain

the answer 4 (reassuringly). Don’t worry about the [1] at the start of the line for now.

Figure 1.3.: R studio console view

However, once you start writing more R code this becomes rather cumbersome. Instead of typing R code directly

into the Console a better approach is to create an R script. An R script is just a plain text file with a .R file extension

which contains your lines of R code. These lines of code are then sourced into the R Console line by line. To create a

new R script click on the ‘File’ menu then select New File –> R Script.

Notice that you have a new window (called the Source pane) in the top left of RStudio and the Console is now in the

bottom left position. The new window is a script editor and where you will write your code.

To source your code from your script editor to the Console simply place your cursor on the line of code and then

click on the ‘Run’ button in the top right of the script editor pane.

You should see the result in the Console window. If clicking on the ‘Run’ button starts to become tiresome you can

use the keyboard shortcut ‘ctrl + enter’ (on Windows and Linux) or ‘cmd + enter’ (on Mac). You can save your R

scripts as a .R file by selecting the ‘File’ menu and clicking on save. Notice that the file name in the tab will turn

red to remind you that you have unsaved changes. To open your R script in RStudio select the ‘File’ menu and then

‘Open File…’. Finally, its worth noting that although R scripts are saved with a .R extension they are actually just

plain text files which can be opened with any text editor.

7

https://support.rstudio.com/hc/en-us/articles/200549016-Customizing-RStudio


Chapter 1. Getting started

Figure 1.4.: R studio creating a new script file

Figure 1.5.: R studio main view with a new script

8



1.2. IDE orientation

Figure 1.6.: R studio run button

1.2.1.2. Environment/History/Connections

The Environment / History / Connections window shows you lots of useful information. You can access each

component by clicking on the appropriate tab in the pane.

• The ‘Environment’ tab displays all the objects you have created in the current (global) environment. These

objects can be things like data you have imported or functions you have written. Objects can be displayed as a

List or in Grid format by selecting your choice from the drop down button on the top right of the window. If

you’re in the Grid format you can remove objects from the environment by placing a tick in the empty box

next to the object name and then click on the broom icon. There’s also an ‘Import Dataset’ button which will

import data saved in a variety of file formats. However, we would suggest that you don’t use this approach to

import your data as it’s not reproducible and therefore not robust (see Chapter 3 for more details).

• The ‘History’ tab contains a list of all the commands you have entered into the R Console. You can search

back through your history for the line of code you have forgotten, send selected code back to the Console or

Source window. We usually never use this as we always refer back to our R script.

• The ‘Connections’ tab allows you to connect to various data sources such as external databases.

1.2.1.3. Files/Plots/Packages/Help/Viewer

• The ‘Files’ tab lists all external files and directories in the current working directory on your computer. It

works like file explorer (Windows) or Finder (Mac). You can open, copy, rename, move and delete files listed

in the window.

9



Chapter 1. Getting started

• The ‘Plots’ tab is where all the plots you create in R are displayed (unless you tell R otherwise). You can

‘zoom’ into the plots to make them larger using the magnifying glass button, and scroll back through previously

created plots using the arrow buttons. There is also the option of exporting plots to an external file using the

‘Export’ drop down menu. Plots can be exported in various file formats such as jpeg, png, pdf, tiff or copied to

the clipboard (although you are probably better off using the appropriate R functions to do this - see [Chapter 4

for more details).

• The ‘Packages’ tab lists all of the packages that you have installed on your computer. You can also install new

packages and update existing packages by clicking on the ‘Install’ and ‘Update’ buttons respectively.

• The ‘Help’ tab displays the R help documentation for any function. We will go over how to view the help files

and how to search for help in Chapter 2).

• The ‘Viewer’ tab displays local web content such as web graphics generated by some packages.

1.2.2. VSCode

Figure 1.7.: VSCode window overview

1.2.2.1. Left panel

Contains :

10



1.2. IDE orientation

• File manager and file outline

• R support including R environment/ R search / R help / install packages

• Github interaction

(a) file pane (b) git pane (c) R pane

Figure 1.8.: VS Code left panel

1.2.2.2. Editor tabs

Includes:

• plot panel (with history and navigation)

• edition of scripts

• preview panels

1.2.2.3. Terminal window

Contains:

11



Chapter 1. Getting started

Figure 1.9.: VSCode editor tabs and preview panels

• the terminal allowing to have an R session or any other type of terminals needed (bash/tmux/). It can be split

and run multiple sessions at the same time

• a problems pane highlighting both grammar and coding problems

Figure 1.10.: VSCode terminal window

1.3. Working directories

The working directory is the default location where R will look for files you want to load and where it will put

any files you save. One of the great things about using RStudio Projects is that when you open a project it will

automatically set your working directory to the appropriate location. You can check the file path of your working

directory by using either getwd() or here() functions.

getwd()

[1] "/home/julien/Documents/courses/biostats/livre/Rway"

12



1.3. Working directories

In the example above, the working directory is a folder called ‘Rway’ which is a subfolder of “biostats’ in

the ‘courses’ folder which in turn is in a ‘Documents’ folder located in the ‘julien’ folder which itself is in

the ‘home’ folder. On a Windows based computer our working directory would also include a drive letter (i.e.

C:\home\julien\Documents\courses\biostats\Rway).

If you weren’t using an IDE then you would have to set your working directory using the setwd() function at the

start of every R script (something we did for many years).

setwd("/home/julien/Documents/courses/biostats/Rway/")

However, the problem with setwd() is that it uses an absolute file path which is specific to the computer you are

working on. If you want to send your script to someone else (or if you’re working on a different computer) this

absolute file path is not going to work on your friend/colleagues computer as their directory configuration will be

different (you are unlikely to have a directory structure /home/julien/Documents/courses/biostats/ on your

computer). This results in a project that is not self-contained and not easily portable. IDEs solves this problem by

allowing you to use relative file paths which are relative to the Root project directory. The Root project directory is

just the directory that contains the .Rproj file in Rstudio (first_project.Rproj in our case) or the base folder

of your workspace in VScode. If you want to share your analysis with someone else, all you need to do is copy the

entire project directory and send to your to your collaborator. They would then just need to open the project file and

any R scripts that contain references to relative file paths will just work. For example, let’s say that you’ve created

a subdirectory called data in your Root project directory that contains a csv delimited datile called mydata.csv

(we will cover directory structures below in Section 1.4). To import this datile in an RStudio project using the

read.csv() function (don’t worry about this now, we will cover this in much more detail in Chapter 3) all you need

to include in your R script is

dat <- read.csv("data/mydata.csv")

Because the file path data/mydata.csv is relative to the project directory it doesn’t matter where you collaborator

saves the project directory on their computer it will still work.

If you weren’t using an RStudio project or VScode workspace then you would need to either set the working directory

providing the full path to your directory or specify the full path of the data file. Neither option would be reproducible

on other computers.

13



Chapter 1. Getting started

setwd("/home/julien/Documents/courses/biostats/Rway")

dat <- read.csv("data/mydata.csv")

or

dat <- read.csv("/home/julien/Documents/courses/biostats/Rway/data/mydata.csv")

For those of you who want to take the notion of relative file paths a step further, take a look at the here() function in

the here package. The here() function allows you to build file paths for any file relative to the project root directory

that are also operating system agnostic (works on a Mac, Windows or Linux machine). For example, to import our

mydata.csv file from the data directory just use:

library(here) # you may need to install the here package first

dat <- read.csv(here("data", "mydata.csv"))

1.4. Directory structure

In addition to using RStudio Projects, it’s also really good practice to structure your working directory in a consistent

and logical way to help both you and your collaborators. We frequently use the following directory structure in our R

based projects.

In our working directory we have the following directories:

• Root - This is your project directory containing your .Rproj file. We tend to keep all the R scripts or [Rq]md

document necessary for the analysis / report in this root folder or in the scripts folder when there are too many.

• data - We store all our data in this directory. The subdirectory called data contains raw data files and only

raw data files. These files should be treated as read only and should not be changed in any way. If you need to

process/clean/modify your data do this in R (not MS Excel) as you can document (and justify) any changes

made. Any processed data should be saved to a separate file and stored in the processed_data subdirectory.

Information about data collection methods, details of data download and any other useful metadata should be

saved in a text document (see README text files below) in the metadata subdirectory.

• functions - This is an optional directory where we save all of the custom R functions we’ve written for the

current analysis. These can then be sourced into R using the source() function.

14

https://github.com/r-lib/here


1.4. Directory structure

Figure 1.11.: Recommended directory structure for analysis with R

• scripts - An optional directory where we save our R markdown documents and/or the main R scripts we have

written for the current project are saved here if not in the root folder.

• output - Outputs from our R scripts such as plots, HTML files and data summaries are saved in this directory.

This helps us and our collaborators distinguish what files are outputs and which are source files.

Of course, the structure described above is just what works for us most of the time and should be viewed as a starting

point for your own needs. We tend to have a fairly consistent directory structure across our projects as this allows us

to quickly orientate ourselves when we return to a project after a while. Having said that, different projects will have

different requirements so we happily add and remove directories as required.

You can create your directory structure using Windows Explorer (or Finder on a Mac) or within your IDE by clicking

on the ‘New folder’ button in the ‘Files’ pane.

An alternative approach is to use the dir.create() functions in the R Console.

# create directory called 'data'

dir.create("data")

15



Chapter 1. Getting started

1.5. Projects organisation

As with most things in life, when it comes to dealing with data and data analysis things are so much simpler if you’re

organized. Clear project organisation makes it easier for both you (especially the future you) and your collaborators to

make sense of what you’ve done. There’s nothing more frustrating than coming back to a project months (sometimes

years) later and have to spend days (or weeks) figuring out where everything is, what you did and why you did it.

A well documented project that has a consistent and logical structure increases the likelihood that you can pick up

where you left off with minimal fuss no matter how much time has passed. In addition, it’s much easier to write code

to automate tasks when files are well organized and are sensibly named. This is even more relevant nowadays as it’s

never been easier to collect vast amounts of data which can be saved across 1000’s or even 100,000’s of separate data

files. Lastly, having a well organized project reduces the risk of introducing bugs or errors into your workflow and if

they do occur (which inevitably they will at some point), it makes it easier to track down these errors and deal with

them efficiently.

There are also a few simple steps you can take right at the start of any project to help keep things shipshape.

A great way of keeping things organized is to use RStudio Projects or VSCode workspaces, referred after as project.

A project keeps all of your R scripts, R markdown documents, R functions and data together in one place. The nice

thing about project is that each has its own directory, history and source documents so different analyses that you

are working on are kept completely separate from each other. This means that you can very easily switch between

projects without fear of them interfering with each other.

1.5.1. RStudio

To create a project, open RStudio and select File -> New Project... from the menu. You can create either an

entirely new project, a project from an existing directory or a version controlled project (see the Chapter 7 for further

details about this). In this Chapter we will create a project in a new directory.

You can also create a new project by clicking on the ‘Project’ button in the top right of RStudio and selecting ‘New

Project…’

In the next window select ‘New Project’.

Now enter the name of the directory you want to create in the ‘Directory name:’ field (we’ll call it first_project

for this Chapter). If you want to change the location of the directory on your computer click the ‘Browse…’ button

and navigate to where you would like to create the directory. We always tick the ‘Open in new session’ box as well.

Finally, hit the ‘Create Project’ to create the new project.

16



1.5. Projects organisation

Figure 1.12.: R Studio creating a Project step 1

Figure 1.13.: R Studio creating a Project step 2

17



Chapter 1. Getting started

Figure 1.14.: R Studio creating a Project step 3

Figure 1.15.: R Studio creating a Project step 4

18



1.5. Projects organisation

Once your new project has been created you will now have a new folder on your computer that contains an RStudio

project file called first_project.Rproj. This .Rproj file contains various project options (but you shouldn’t

really interact with it) and can also be used as a shortcut for opening the project directly from the file system (just

double click on it). You can check this out in the ‘Files’ tab in RStudio (or in Finder if you’re on a Mac or File

Explorer in Windows).

Figure 1.16.: R Studio creating a Project final step

The last thing we suggest you do is select Tools -> Project Options... from the menu. Click on the ‘General’

tab on the left hand side and then change the values for ‘Restore .RData into workspace at startup’ and ‘Save

workspace to .RData on exit’ from ‘Default’ to ‘No’. This ensures that every time you open your project you start

with a clean R session. You don’t have to do this (many people don’t) but we prefer to start with a completely clean

workspace whenever we open our projects to avoid any potential conflicts with things we have done in previous

sessions (sometimes leading to surprising results and headaches figuring out the problem). The downside to this is

that you will need to rerun your R code every time you open your project.

Now that you have an RStudio project set up you can start creating R scripts (or R markdown /Quarto documents,

see Chapter 6) or whatever you need to complete you project. All of the R scripts will now be contained within the

RStudio project and saved in the project folder.

1.5.2. VSCode

workspace are similar to RStudio projects. You however need to create a new folder with a R file (or text file) and

save as workspace.

19



Chapter 1. Getting started

Figure 1.17.: R Studio creating a Project changing options

1.6. File names

What you name your files matters more than you might think. Naming files is also more difficult than you think. The

key requirement for a ‘good’ file name is that it’s informative whilst also being relatively short. This is not always an

easy compromise and often requires some thought. Ideally you should try to avoid the following!

Although there’s not really a recognized standard approach to naming files (actually there is, just not everyone uses

it), there are a couple of things to bear in mind.

• Avoid using spaces in file names by replacing them with underscores or hyphens. Why does this matter? One

reason is that some command line software (especially many bioinformatic tools) won’t recognise a file name

with a space and you’ll have to go through all sorts of shenanigans using escape characters to make sure spaces

are handled correctly. Even if you don’t think you will ever use command line software you may be doing so

indirectly. Take R markdown for example, if you want to render an R markdown document to pdf using the

rmarkdown package you will actually be using a command line LATEX engine under the hood. Another

good reason not to use spaces in file names is that it makes searching for file names (or parts of file names)

using regular expressions in R (or any other language) much more difficult.

• Avoid using special characters (i.e. @£$%^&*(:/)) in your file names.

20

https://en.wikipedia.org/wiki/Filename
https://en.wikipedia.org/wiki/Regular_expression


1.7. Script documentation

Figure 1.18.: File renaming song (source:https://xkcd.com/1459/)

• If you are versioning your files with sequential numbers (i.e. file1, file2, file3 …). If you plan to have more

than 9 files you should use 01, 02, 03, …, 10 as this will ensure the files are listed in the correct order. If you

plan to have more than 99 files then use 001, 002, 003, …

• For dates, use the ISO 8601 format YYYY-MM-DD (or YYYYMMDD) to ensure your files are listed in

proper chronological order.

• Never use the word final in any file name - it extremely rarely is!

Whatever file naming convention you decide to use, try to adopt early, stick with it and be consistent.

1.7. Script documentation

A quick note or two about writing R code and creating R scripts. Unless you’re doing something really quick and

dirty we suggest that you always write your R code as an R script. R scripts are what make R so useful. Not only do

you have a complete record of your analysis, from data manipulation, visualisation and statistical analysis, you can

also share this code (and data) with friends, colleagues and importantly when you submit and publish your research

to a journal. With this in mind, make sure you include in your R script all the information required to make your work

reproducible (author names, dates, sampling design etc). This information could be included as a series of comments

# or, even better, by mixing executable code with narrative into an R markdown document (Chapter 6). It’s also good

21

https://xkcd.com/1459/


Chapter 1. Getting started

practice to include the output of the sessionInfo() function at the end of any script which prints the R version,

details of the operating system and also loaded packages. A really good alternative is to use the session_info()

function from the xfun package for a more concise summary of our session environment.

Here’s an example of including meta-information at the start of an R script

# Title: Time series analysis of lasagna consumption

# Purpose : This script performs a time series analyses on

# lasagna meals kids want to have each week.

# Data consists of counts of (dreamed) lasagna meals per week

# collected from 24 kids at the "Food-dreaming" school

# between 2042 and 2056.

# data file: lasagna_dreams.csv

# Author: A. Stomach

# Contact details: a.stomach@food.uni.com

# Date script created: Fri Mar 29 17:06:44 2010 -----------

# Date script last modified: Thu Dec 12 16:07:12 2019 ----

# package dependencies

library(tidyverse)

library(ggplot2)

print("put your lovely R code here")

# good practice to include session information

xfun::session_info()

This is just one example and there are no hard and fast rules so feel free to develop a system that works for you.

A really useful shortcut in RStudio is to automatically include a time and date stamp in your R script. To do this,

write ts where you want to insert your time stamp in your R script and then press the ‘shift + tab’ keys. RStudio

22



1.8. R style guide

will convert ts into the current date and time and also automatically comment out this line with a #. Another really

useful RStudio shortcut is to comment out multiple lines in your script with a # symbol. To do this, highlight the

lines of text you want to comment and then press ‘ctrl + shift + c’ (or ‘cmd + shift + c’ on a mac). To uncomment the

lines just use ‘ctrl + shift + c’ again.

In addition to including metadata in your R scripts it’s also common practice to create a separate text file to record

important information. By convention these text files are named README. We often include a README file in the

directory where we keep our raw data. In this file we include details about when data were collected (or downloaded),

how data were collected, information about specialised equipment, preservation methods, type and version of any

machines used (i.e. sequencing equipment) etc. You can create a README file for your project in RStudio by

clicking on the File -> New File -> Text File menu.

1.8. R style guide

How you write your code is more or less up to you although your goal should be to make it as easy to read as possible

(for you and others). Whilst there are no rules (and no code police), we encourage you to get into the habit of writing

readable R code by adopting a particular style. We suggest that you follow Google’s R style guide whenever possible.

This style guide will help you decide where to use spaces, how to indent code and how to use square [ ] and curly {

} brackets amongst other things.

To help you with code formatting:

• VSCode there is an embedded formatter in the R extension for VSCode. You can just use the keyboard shortcut

to reformat the code nicely and automatically.

• RStudio you can install the styler package which includes an RStudio add-in to allow you to automatically

restyle selected code (or entire files and projects) with the click of your mouse. You can find more information

about the styler package including how to install here. Once installed, you can highlight the code you

want to restyle, click on the ‘Addins’ button at the top of RStudio and select the ‘Style Selection’ option. Here

is an example of poorly formatted R code

Figure 1.19.: Poorly styled code

23

https://google.github.io/styleguide/Rguide.html
https://styler.r-lib.org/


Chapter 1. Getting started

Now highlight the code and use the styler package to reformat

Figure 1.20.: Styling code with styler

To produce some nicely formatted code

Figure 1.21.: Nicely styled code

1.9. Backing up projects

Don’t be that person who loses hard won (and often expensive) data and analyses. Don’t be that person who thinks

it’ll never happen to me - it will! Always think of the absolute worst case scenario, something that makes you wake

up in a cold sweat at night, and do all you can to make sure this never happens. Just to be clear, if you’re relying on

copying your precious files to an external hard disk or USB stick this is NOT an effective backup strategy. These

things go wrong all the time as you lob them into your rucksack or ‘bag for life’ and then lug them between your

office and home. Even if you do leave them plugged into your computer what happens when the building burns down

(we did say worst case!)?

24



1.10. Citing R and R packages

Ideally, your backups should be offsite and incremental. Happily there are numerous options for backing up your

files. The first place to look is in your own institute. Most (all?) Universities have some form of network based

storage that should be easily accessible and is also underpinned by a comprehensive disaster recovery plan. Other

options include cloud based services such as Google Drive and Dropbox (to name but a few), but make sure you’re

not storing sensitive data on these services and are comfortable with the often eye watering privacy policies.

Whilst these services are pretty good at storing files, they don’t really help with incremental backups. Finding

previous versions of files often involves spending inordinate amounts of time trawling through multiple files named

‘final.doc’, ‘final_v2.doc’ and ‘final_usethisone.doc’ etc until you find the one you were looking for. The best way

we know for both backing up files and managing different versions of files is to use Git and GitHub. To find out more

about how you can use RStudio, Git and GitHub together see Chapter 7.

1.10. Citing R and R packages

Many people have invested huge amounts of time and energy making R the great piece of software you’re now using.

If you use R in your work (and we hope you do) please remember to give appropriate credit by citing not only R but

also all the packages you used. To get the most up to date citation for R you can use the citation() function.

citation()

To cite R in publications use:

R Core Team (2024). _R: A Language and Environment for Statistical

Computing_. R Foundation for Statistical Computing, Vienna, Austria.

<https://www.R-project.org/>.

A BibTeX entry for LaTeX users is

@Manual{,

title = {R: A Language and Environment for Statistical Computing},

author = {{R Core Team}},

organization = {R Foundation for Statistical Computing},

address = {Vienna, Austria},

year = {2024},

25



Chapter 1. Getting started

url = {https://www.R-project.org/},

}

We have invested a lot of time and effort in creating R, please cite it

when using it for data analysis. See also 'citation("pkgname")' for

citing R packages.

If you want to cite a particular package you’ve used for your data analysis, you can also use the citation() function

to get the info.

citation(package = "here")

To cite package 'here' in publications use:

Müller K (2020). _here: A Simpler Way to Find Your Files_. R package

version 1.0.1, <https://CRAN.R-project.org/package=here>.

A BibTeX entry for LaTeX users is

@Manual{,

title = {here: A Simpler Way to Find Your Files},

author = {Kirill Müller},

year = {2020},

note = {R package version 1.0.1},

url = {https://CRAN.R-project.org/package=here},

}

In our view the most useful tool for citation is the package grateful which allow you to generate the citing

information in a file, as well as creating either a sentence or a table citing all packages used. This should become the

standard in any manuscript honestly. See Table 22.1 for an example output produced with grateful.

26



Chapter 2
Some R basics

In this Chapter we’ll cover how to:

• create objects and assigning values to objects

• exploring different types of objects and how to perform some common operations on objects

• get help in R and highlight some resources to help support your R learning.

• save your work

• use and install packages to extend base R capabilities.

2.1. Important considerations

We provide screenshot of RStudio but everything is really similar when using VSCode.

Before we continue, here are a few things to bear in mind as you work through this Chapter:

• R is case sensitive i.e. A is not the same as a and anova is not the same as Anova.

• Anything that follows a # symbol is interpreted as a comment and ignored by R. Comments should be used

liberally throughout your code for both your own information and also to help your collaborators. Writing

comments is a bit of an art and something that you will become more adept at as your experience grows.

• In R, commands are generally separated by a new line. You can also use a semicolon ; to separate your

commands but we strongly recommend to avoid using it.

• If a continuation prompt + appears in the console after you execute your code this means that you haven’t

completed your code correctly. This often happens if you forget to close a bracket and is especially common

27

https://en.wikipedia.org/wiki/Comment_(computer_programming)


Chapter 2. Some R basics

when nested brackets are used ((((some command))). Just finish the command on the new line and fix the

typo or hit escape on your keyboard (see point below) and fix.

• In general, R is fairly tolerant of extra spaces inserted into your code, in fact using spaces is actively encouraged.

However, spaces should not be inserted into operators i.e. <- should not read < - (note the space). See the

style guide for advice on where to place spaces to make your code more readable.

• If your console ‘hangs’ and becomes unresponsive after running a command you can often get yourself out of

trouble by pressing the escape key (esc) on your keyboard or clicking on the stop icon in the top right of your

console. This will terminate most current operations.

2.2. First step in the console

In Chapter 1, we learned about the R Console and creating scripts and Projects. We also saw how you write your R

code in a script and then source this code into the console to get it to run (if you’ve forgotten how to do this, pop

back to the console section (1.2.1.1) to refresh your memory). Writing your code in a script means that you’ll always

have a permanent record of everything you’ve done (provided you save your script) and also allows you to make

loads of comments to remind your future self what you’ve done. So, while you’re working through this Chapter we

suggest that you create a new script (or RStudio Project) to write your code as you follow along.

As we saw in Chapter 1, at a basic level we can use R much as you would use a calculator. We can type an arithmetic

expression into our script, then source it into the console and receive a result. For example, if we type the expression

1 + 1 and then source this line of code we get the answer 2 ( !)

1 + 1

[1] 2

The [1] in front of the result tells you that the observation number at the beginning of the line is the first observation.

This is not much help in this example, but can be quite useful when printing results with multiple lines (we’ll

see an example below). The other obvious arithmetic operators are -, *, / for subtraction, multiplication and

division respectively. Matrix multiplication operator is %*%. R follows the usual mathematical convention of order of

operations. For example, the expression 2 + 3 * 4 is interpreted to have the value 2 + (3 * 4) = 14, not (2

+ 3) * 4 = 20. There are a huge range of mathematical functions in R, some of the most useful include; log(),

log10(), exp(), sqrt().

28

https://google.github.io/styleguide/Rguide.html
https://en.wikipedia.org/wiki/Order_of_operations
https://en.wikipedia.org/wiki/Order_of_operations


2.3. Objects in R

log(1) # logarithm to base e

[1] 0

log10(1) # logarithm to base 10

[1] 0

exp(1) # natural antilog

[1] 2.718282

sqrt(4) # square root

[1] 2

4^2 # 4 to the power of 2

[1] 16

pi # not a function but useful

[1] 3.141593

It’s important to realize that when you run code as we’ve done above, the result of the code (or value) is only displayed

in the console. Whilst this can sometimes be useful it is usually much more practical to store the value(s) in aN

object.

2.3. Objects in R

At the heart of almost everything you will do (or ever likely to do) in R is the concept that everything in R is an object.

These objects can be almost anything, from a single number or character string (like a word) to highly complex

structures like the output of a plot, a summary of your statistical analysis or a set of R commands that perform a

specific task. Understanding how you create objects and assign values to objects is key to understanding R.

29

https://journal.r-project.org/archive/2009-1/RJournal_2009-1_Chambers.pdf


Chapter 2. Some R basics

2.3.1. Creating objects

To create an object we simply give the object a name. We can then assign a value to this object using the assignment

operator <- (sometimes called the gets operator). The assignment operator is a composite symbol comprised of a

‘less than’ symbol < and a hyphen - .

my_obj <- 32

In the code above, we created an object called my_obj and assigned it a value of the number 32 using the assignment

operator (in our head we always read this as ‘my_obj is 32’). You can also use = instead of <- to assign values but

this is bad practice since it can lead to confusion later on when programming in R (see Chapter 5) and we would

discourage you from using this notation.

To view the value of the object you simply type the name of the object

my_obj

[1] 32

Now that we’ve created this object, R knows all about it and will keep track of it during this current R session. All of

the objects you create will be stored in the current workspace and you can view all the objects in your workspace in

RStudio by clicking on the ‘Environment’ tab in the top right hand pane.

Figure 2.1.: RStudio Environment tab

If you click on the down arrow on the ‘List’ icon in the same pane and change to ‘Grid’ view RStudio will show you

a summary of the objects including the type (numeric - it’s a number), the length (only one value in this object), its

‘physical’ size and its value (48 in this case). In VSCode, go on the R extension pane, and you can obtain the same

information.

There are many different types of values that you can assign to an object. For example

30



2.3. Objects in R

Figure 2.2.: RStudio Environment tab in grid format

my_obj2 <- "R is cool"

Here we have created an object called my_obj2 and assigned it a value of R is cool which is a character string.

Notice that we have enclosed the string in quotes. If you forget to use the quotes you will receive an error message.

Our workspace now contains both objects we’ve created so far with my_obj2 listed as type character.

Figure 2.3.: RStudio environment tab with my_obj2 as a character

To change the value of an existing object we simply reassign a new value to it. For example, to change the value of

my_obj2 from "R is cool" to the number 1024

my_obj2 <- 1024

Notice that the Type has changed to numeric and the value has changed to 1024 in the environment

Figure 2.4.: RStudio environment tab with updated my_obj2 as numeric

31



Chapter 2. Some R basics

Once we have created a few objects, we can do stuff with our objects. For example, the following code creates a new

object my_obj3 and assigns it the value of my_obj added to my_obj2 which is 1072 (48 + 1024 = 1072).

my_obj3 <- my_obj + my_obj2

my_obj3

[1] 1056

Notice that to display the value of my_obj3 we also need to write the object’s name. The above code works because

the values of both my_obj and my_obj2 are numeric (i.e. a number). If you try to do this with objects with character

values (character class) you will receive an error

char_obj <- "hello"

char_obj2 <- "world!"

char_obj3 <- char_obj + char_obj2

# Error in char_obj+char_obj2:non-numeric argument to binary operator

The error message is essentially telling you that either one or both of the objects char_obj and char_obj2 is not a

number and therefore cannot be added together.

When you first start learning R, dealing with errors and warnings can be frustrating as they’re often difficult to

understand (what’s an argument? what’s a binary operator?). One way to find out more information about a particular

error is to search for a generalised version of the error message. For the above error try searching ‘non-numeric

argument to binary operator error + r’ or even ‘common r error messages’.

Another error message that you’ll get quite a lot when you first start using R is Error: object 'XXX' not found.

As an example, take a look at the code below

my_obj <- 48

my_obj4 <- my_obj + no_obj

# Error: object 'no_obj' not found

R returns an error message because we haven’t created (defined) the object no_obj yet. Another clue that there’s a

problem with this code is that, if you check your environment, you’ll see that object my_obj4 has not been created.

32

https://www.quora.com/What-is-an-%E2%80%9Cargument%E2%80%9D-in-an-R-function
https://www.statmethods.net/management/operators.html
https://www.google.com/search?client=firefox-b-d&q=non-numeric+argument+to+binary+operator+error+%2B+r
https://www.google.com/search?client=firefox-b-d&q=non-numeric+argument+to+binary+operator+error+%2B+r
https://www.google.com/search?client=firefox-b-d&q=common+r+error+messages


2.4. Using functions in R

2.3.2. Naming objects

Naming your objects is one of the most difficult things you will do in R. Ideally your object names should be kept

both short and informative which is not always easy. If you need to create objects with multiple words in their name

then use either an underscore or a dot between words or capitalise the different words. We prefer the underscore

format and never include uppercase in names (called snake_case)

output_summary <- "my analysis" # recommended#

output.summary <- "my analysis"

outputSummary <- "my analysis"

There are also a few limitations when it come to giving objects names. An object name cannot start with a number or a

dot followed by a number (i.e. 2my_variable or .2my_variable). You should also avoid using non-alphanumeric

characters in your object names (i.e. &, ^, /, ! etc). In addition, make sure you don’t name your objects with reserved

words (i.e. TRUE, NA) and it’s never a good idea to give your object the same name as a built-in function. One that

crops up more times than we can remember is

data <- read.table("mydatafile", header = TRUE)

Yes, data() is a function in R to load or list available data sets from packages.

2.4. Using functions in R

Up until now we’ve been creating simple objects by directly assigning a single value to an object. It’s very likely that

you’ll soon want to progress to creating more complicated objects as your R experience grows and the complexity

of your tasks increase. Happily, R has a multitude of functions to help you do this. You can think of a function as

an object which contains a series of instructions to perform a specific task. The base installation of R comes with

many functions already defined or you can increase the power of R by installing one of the 10,000’s of packages now

available. Once you get a bit more experience with using R you may want to define your own functions to perform

tasks that are specific to your goals (more about this in Chapter 5).

The first function we will learn about is the c() function. The c() function is short for concatenate and we use it to

join together a series of values and store them in a data structure called a vector (more on vectors in Chapter 3).

33

https://en.wikipedia.org/wiki/Snake_case
https://www.datamentor.io/r-programming/vector/


Chapter 2. Some R basics

my_vec <- c(2, 3, 1, 6, 4, 3, 3, 7)

In the code above we’ve created an object called my_vec and assigned it a value using the function c(). There

are a couple of really important points to note here. Firstly, when you use a function in R, the function name is

always followed by a pair of round brackets even if there’s nothing contained between the brackets. Secondly, the

argument(s) of a function are placed inside the round brackets and are separated by commas. You can think of an

argument as way of customising the use or behaviour of a function. In the example above, the arguments are the

numbers we want to concatenate. Finally, one of the tricky things when you first start using R is to know which

function to use for a particular task and how to use it. Thankfully each function will always have a help document

associated with it which will explain how to use the function (more on this later Section 2.6) and a quick web search

will also usually help you out.

To examine the value of our new object we can simply type out the name of the object as we did before

my_vec

[1] 2 3 1 6 4 3 3 7

Now that we’ve created a vector we can use other functions to do useful stuff with this object. For example, we can

calculate the mean, variance, standard deviation and number of elements in our vector by using the mean(), var(),

sd() and length() functions

mean(my_vec) # returns the mean of my_vec

[1] 3.625

var(my_vec) # returns the variance of my_vec

[1] 3.982143

sd(my_vec) # returns the standard deviation of my_vec

[1] 1.995531

34



2.4. Using functions in R

length(my_vec) # returns the number of elements in my_vec

[1] 8

If we wanted to use any of these values later on in our analysis we can just assign the resulting value to another

object

vec_mean <- mean(my_vec) # returns the mean of my_vec

vec_mean

[1] 3.625

Sometimes it can be useful to create a vector that contains a regular sequence of values in steps of one. Here we can

make use of a shortcut using the : symbol.

my_seq <- 1:10 # create regular sequence

my_seq

[1] 1 2 3 4 5 6 7 8 9 10

my_seq2 <- 10:1 # in decending order

my_seq2

[1] 10 9 8 7 6 5 4 3 2 1

Other useful functions for generating vectors of sequences include the seq() and rep() functions. For example, to

generate a sequence from 1 to 5 in steps of 0.5

my_seq2 <- seq(from = 1, to = 5, by = 0.5)

my_seq2

[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

35



Chapter 2. Some R basics

Here we’ve used the arguments from = and to = to define the limits of the sequence and the by = argument to

specify the increment of the sequence. Play around with other values for these arguments to see their effect.

The rep() function allows you to replicate (repeat) values a specified number of times. To repeat the value 2, 10

times

my_seq3 <- rep(2, times = 10) # repeats 2, 10 times

my_seq3

[1] 2 2 2 2 2 2 2 2 2 2

You can also repeat non-numeric values

my_seq4 <- rep("abc", times = 3) # repeats ‘abc’ 3 times

my_seq4

[1] "abc" "abc" "abc"

or each element of a series

my_seq5 <- rep(1:5, times = 3) # repeats the series 1 to

# 5, 3 times

my_seq5

[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

or elements of a series

my_seq6 <- rep(1:5, each = 3) # repeats each element of the

# series 3 times

my_seq6

[1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

We can also repeat a non-sequential series

36



2.5. Working with vectors

my_seq7 <- rep(c(3, 1, 10, 7), each = 3) # repeats each

# element of the

# series 3 times

my_seq7

[1] 3 3 3 1 1 1 10 10 10 7 7 7

Note in the code above how we’ve used the c() function inside the rep() function. Nesting functions allows us to

build quite complex commands within a single line of code and is a very common practice when using R. However,

care needs to be taken as too many nested functions can make your code quite difficult for others to understand (or

yourself some time in the future!). We could rewrite the code above to explicitly separate the two different steps to

generate our vector. Either approach will give the same result, you just need to use your own judgement as to which

is more readable.

in_vec <- c(3, 1, 10, 7)

my_seq7 <- rep(in_vec, each = 3) # repeats each element of

# the series 3 times

my_seq7

[1] 3 3 3 1 1 1 10 10 10 7 7 7

2.5. Working with vectors

Manipulating, summarising and sorting data using R is an important skill to master but one which many people find

a little confusing at first. We’ll go through a few simple examples here using vectors to illustrate some important

concepts but will build on this in much more detail in Chapter 3 where we will look at more complicated (and useful)

data structures.

2.5.1. Extracting elements

To extract (also known as indexing or subscripting) one or more values (more generally known as elements) from a

vector we use the square bracket [ ] notation. The general approach is to name the object you wish to extract from,

then a set of square brackets with an index of the element you wish to extract contained within the square brackets.

This index can be a position or the result of a logical test.

37



Chapter 2. Some R basics

Positional index

To extract elements based on their position we simply write the position inside the [ ]. For example, to extract the

3rd value of my_vec

my_vec # remind ourselves what my_vec looks like

[1] 2 3 1 6 4 3 3 7

my_vec[3] # extract the 3rd value

[1] 1

# if you want to store this value in another object

val_3 <- my_vec[3]

val_3

[1] 1

Note that the positional index starts at 1 rather than 0 like some other other programming languages (i.e. Python).

We can also extract more than one value by using the c() function inside the square brackets. Here we extract the

1st, 5th, 6th and 8th element from the my_vec object

my_vec[c(1, 5, 6, 8)]

[1] 2 4 3 7

Or we can extract a range of values using the : notation. To extract the values from the 3rd to the 8th elements

my_vec[3:8]

[1] 1 6 4 3 3 7

38



2.5. Working with vectors

2.5.1.1. Logical index

Another really useful way to extract data from a vector is to use a logical expression as an index. For example, to

extract all elements with a value greater than 4 in the vector my_vec

my_vec[my_vec > 4]

[1] 6 7

Here, the logical expression is my_vec > 4 and R will only extract those elements that satisfy this logical condition.

So how does this actually work? If we look at the output of just the logical expression without the square brackets you

can see that R returns a vector containing either TRUE or FALSE which correspond to whether the logical condition is

satisfied for each element. In this case only the 4th and 8th elements return a TRUE as their value is greater than 4.

my_vec > 4

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

So what R is actually doing under the hood is equivalent to

my_vec[c(FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE)]

[1] 6 7

and only those element that are TRUE will be extracted.

In addition to the < and > operators you can also use composite operators to increase the complexity of your

expressions. For example the expression for ‘greater or equal to’ is >=. To test whether a value is equal to a value we

need to use a double equals symbol == and for ‘not equal to’ we use != (the ! symbol means ‘not’).

my_vec[my_vec >= 4] # values greater or equal to 4

[1] 6 4 7

39



Chapter 2. Some R basics

my_vec[my_vec < 4] # values less than 4

[1] 2 3 1 3 3

my_vec[my_vec <= 4] # values less than or equal to 4

[1] 2 3 1 4 3 3

my_vec[my_vec == 4] # values equal to 4

[1] 4

my_vec[my_vec != 4] # values not equal to 4

[1] 2 3 1 6 3 3 7

We can also combine multiple logical expressions using Boolean expressions. In R the & symbol means AND and

the | symbol means OR. For example, to extract values in my_vec which are less than 6 AND greater than 2

val26 <- my_vec[my_vec < 6 & my_vec > 2]

val26

[1] 3 4 3 3

or extract values in my_vec that are greater than 6 OR less than 3

val63 <- my_vec[my_vec > 6 | my_vec < 3]

val63

[1] 2 1 7

2.5.2. Replacing elements

We can change the values of some elements in a vector using our [ ] notation in combination with the assignment

operator <-. For example, to replace the 4th value of our my_vec object from 6 to 500

40

https://en.wikipedia.org/wiki/Boolean_expression


2.5. Working with vectors

my_vec[4] <- 500

my_vec

[1] 2 3 1 500 4 3 3 7

We can also replace more than one value or even replace values based on a logical expression

# replace the 6th and 7th element with 100

my_vec[c(6, 7)] <- 100

my_vec

[1] 2 3 1 500 4 100 100 7

# replace element that are less than or equal to 4 with 1000

my_vec[my_vec <= 4] <- 1000

my_vec

[1] 1000 1000 1000 500 1000 100 100 7

2.5.3. Ordering elements

In addition to extracting particular elements from a vector we can also order the values contained in a vector. To sort

the values from lowest to highest value we can use the sort() function

vec_sort <- sort(my_vec)

vec_sort

[1] 7 100 100 500 1000 1000 1000 1000

To reverse the sort, from highest to lowest, we can either include the decreasing = TRUE argument when using

the sort() function

41



Chapter 2. Some R basics

vec_sort2 <- sort(my_vec, decreasing = TRUE)

vec_sort2

[1] 1000 1000 1000 1000 500 100 100 7

or first sort the vector using the sort() function and then reverse the sorted vector using the rev() function. This

is another example of nesting one function inside another function.

vec_sort3 <- rev(sort(my_vec))

vec_sort3

[1] 1000 1000 1000 1000 500 100 100 7

Whilst sorting a single vector is fun, perhaps a more useful task would be to sort one vector according to the values

of another vector. To do this we should use the order() function in combination with [ ]. To demonstrate this

let’s create a vector called height containing the height of 5 different people and another vector called p.names

containing the names of these people (so Joanna is 180 cm, Charlotte is 155 cm etc)

height <- c(180, 155, 160, 167, 181)

height

[1] 180 155 160 167 181

p.names <- c("Joanna", "Charlotte", "Helen", "Karen", "Amy")

p.names

[1] "Joanna" "Charlotte" "Helen" "Karen" "Amy"

Our goal is to order the people in p.names in ascending order of their height. The first thing we’ll do is use the

order() function with the height variable to create a vector called height_ord

height_ord <- order(height)

height_ord

[1] 2 3 4 1 5

42



2.5. Working with vectors

OK, what’s going on here? The first value, 2, (remember ignore [1]) should be read as ‘the smallest value of height

is the second element of the height vector’. If we check this by looking at the height vector above, you can see that

element 2 has a value of 155, which is the smallest value. The second smallest value in height is the 3rd element of

height, which when we check is 160 and so on. The largest value of height is element 5 which is 181. Now that

we have a vector of the positional indices of heights in ascending order (height_ord), we can extract these values

from our p.names vector in this order

names_ord <- p.names[height_ord]

names_ord

[1] "Charlotte" "Helen" "Karen" "Joanna" "Amy"

You’re probably thinking ‘what’s the use of this?’ Well, imagine you have a dataset which contains two columns of

data and you want to sort each column. If you just use sort() to sort each column separately, the values of each

column will become uncoupled from each other. By using the ‘order()’ on one column, a vector of positional indices

is created of the values of the column in ascending order This vector can be used on the second column, as the index

of elements which will return a vector of values based on the first column. In all honestly, when you have multiple

related vectors you need to use a data.frame type of object (see Chapter 3) instead of multiple independent vectors.

2.5.4. Vectorisation

One of the great things about R functions is that most of them are vectorised. This means that the function will

operate on all elements of a vector without needing to apply the function on each element separately. For example, to

multiple each element of a vector by 5 we can simply use

# create a vector

my_vec2 <- c(3, 5, 7, 1, 9, 20)

# multiply each element by 5

my_vec2 * 5

[1] 15 25 35 5 45 100

Or we can add the elements of two or more vectors

43



Chapter 2. Some R basics

# create a second vector

my_vec3 <- c(17, 15, 13, 19, 11, 0)

# add both vectors

my_vec2 + my_vec3

[1] 20 20 20 20 20 20

# multiply both vectors

my_vec2 * my_vec3

[1] 51 75 91 19 99 0

However, you must be careful when using vectorisation with vectors of different lengths as R will quietly recycle the

elements in the shorter vector rather than throw a wobbly (error).

# create a third vector

my_vec4 <- c(1, 2)

# add both vectors - quiet recycling!

my_vec2 + my_vec4

[1] 4 7 8 3 10 22

2.5.5. Missing data

In R, missing data is usually represented by an NA symbol meaning ‘Not Available’. Data may be missing for a whole

bunch of reasons, maybe your machine broke down, maybe you broke down, maybe the weather was too bad to

collect data on a particular day etc etc. Missing data can be a pain in the proverbial both from an R perspective and

also a statistical perspective. From an R perspective missing data can be problematic as different functions deal with

missing data in different ways. For example, let’s say we collected air temperature readings over 10 days, but our

thermometer broke on day 2 and again on day 9 so we have no data for those days

44



2.5. Working with vectors

temp <- c(7.2, NA, 7.1, 6.9, 6.5, 5.8, 5.8, 5.5, NA, 5.5)

temp

[1] 7.2 NA 7.1 6.9 6.5 5.8 5.8 5.5 NA 5.5

We now want to calculate the mean temperature over these days using the mean() function

mean_temp <- mean(temp)

mean_temp

[1] NA

If a vector has a missing value then the only possible value to return when calculating a mean is NA. R doesn’t know

that you perhaps want to ignore the NA values (R can’t read your mind - yet!). If we look at the help file (using

?mean - see the next section Section 2.6 for more details) associated with the mean() function we can see there is an

argument na.rm = which is set to FALSE by default.

na.rm - a logical value indicating whether NA values should be stripped before the computation proceeds.

If we change this argument to na.rm = TRUE when we use the mean() function this will allow us to ignore the NA

values when calculating the mean

mean_temp <- mean(temp, na.rm = TRUE)

mean_temp

[1] 6.2875

It’s important to note that the NA values have not been removed from our temp object (that would be bad practice),

rather the mean() function has just ignored them. The point of the above is to highlight how we can change the

default behaviour of a function using an appropriate argument. The problem is that not all functions will have

an na.rm = argument, they might deal with NA values differently. However, the good news is that every help file

associated with any function will always tell you how missing data are handled by default.

45



Chapter 2. Some R basics

2.6. Getting help

This book is intended as a relatively brief introduction to R and as such you will soon be using functions and packages

that go beyond this scope of this introductory text. Fortunately, one of the strengths of R is its comprehensive and

easily accessible help system and wealth of online resources where you can obtain further information.

2.6.1. R help

To access R’s built-in help facility to get information on any function simply use the help() function. For example,

to open the help page for our friend the mean() function.

help("mean")

or you can use the equivalent shortcut

?mean

the help page is displayed in the ‘Help’ tab in the Files pane (usually in the bottom right of RStudio)

Figure 2.5.: Help page for the mean() function in RStudio Help pane

Admittedly the help files can seem anything but helpful when you first start using R. This is probably because they’re

written in a very concise manner and the language used is often quite technical and full of jargon. Having said that,

you do get used to this and will over time even come to appreciate a certain beauty in their brevity (honest!). One

46



2.6. Getting help

of the great things about the help files is that they all have a very similar structure regardless of the function. This

makes it easy to navigate through the file to find exactly what you need.

The first line of the help document contains information such as the name of the function and the package where the

function can be found. There are also other headings that provide more specific information such as

Headings Description

Description: gives a brief description of the function and what it does.

Usage: gives the name of the arguments associated with the function and possible default

values.

Arguments: provides more detail regarding each argument and what they do.

Details: gives further details of the function if required.

Value: if applicable, gives the type and structure of the object returned by the function or the

operator.

See Also: provides information on other help pages with similar or related content.

Examples: gives some examples of using the function.

The Examples are are really helpful, all you need to do is copy and paste them into the console to see what happens.

You can also access examples at any time by using the example() function (i.e. example("mean"))

The help() function is useful if you know the name of the function. If you’re not sure of the name, but can remember

a key word then you can search R’s help system using the help.search() function.

help.search("mean")

or you can use the equivalent shortcut

??mean

The results of the search will be displayed in RStudio under the ‘Help’ tab as before. The help.search() function

searches through the help documentation, code demonstrations and package vignettes and displays the results as

clickable links for further exploration.

Another useful function is apropos(). This function can be used to list all functions containing a specified character

string. For example, to find all functions with mean in their name

47



Chapter 2. Some R basics

Figure 2.6.: Output of the help.search() function in RStudio

apropos("mean")

[1] ".colMeans" ".rowMeans" "colMeans" "kmeans"

[5] "mean" "mean_temp" "mean.Date" "mean.default"

[9] "mean.difftime" "mean.POSIXct" "mean.POSIXlt" "rowMeans"

[13] "vec_mean" "weighted.mean"

You can then bring up the help file for the relevant function.

help("kmeans")

Another function is RSiteSearch() which enables you to search for keywords and phrases in function help pages

and vignettes for all CRAN packages. This function allows you to access the search engine of the R website

https://www.r-project.org/search.html directly from the Console with the results displayed in your web browser.

RSiteSearch("regression")

2.6.2. Other sources of help

There really has never been a better time to start learning R. There are a plethora of freely available online resources

ranging from whole courses to subject specific tutorials and mailing lists. There are also plenty of paid for options if

48

https://www.r-project.org/search.html


2.6. Getting help

that’s your thing but unless you’ve money to burn there really is no need to part with your hard earned cash. Some

resources we have found helpful are listed below.

2.6.2.1. General R resources

• R-Project: User contributed documentation

• The R Journal: Journal of the R project for statistical computing

• Swirl: An R package that teaches you R from within R

• RStudio’s printable cheatsheets

• Rseek A custom Google search for R-related sites

2.6.2.2. Getting help

• [Internet search]: Use your favourite search engine (google, ecosia, duckduckgo, … )for any error messages

you get. It’s not cheating and everyone does it! You’ll be surprised how many other people have probably had

the same problem and solved it.

• Stack Overflow: There are many thousands of questions relevant to R on Stack Overflow. Here are the most

popular ones, ranked by vote. Make sure you search for similar questions before asking your own, and make

sure you include a reproducible example to get the most useful advice. A reproducible example is a minimal

example that lets others who are trying to help you to see the error themselves.

2.6.2.3. R markdown resources

• Basic markdown and R markdown reference

• A good markdown reference

• A good 10-minute markdown tutorial

• RStudio’s R markdown cheatsheet

• R markdown reference sheet

• The R markdown documentation including a getting started guide, a gallery of demos, and several articles for

more advanced usage.

• The knitr website has lots of useful reference material about how knitr works.

49

https://cran.r-project.org/other-docs.html
https://journal.r-project.org/
http://swirlstats.com/
https://www.rstudio.com/resources/cheatsheets/
http://rseek.org/
http://stackoverflow.com/questions/tagged/r
https://stackoverflow.com/questions/tagged/r?sort=votes
http://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example/5963610#5963610
http://bioconnector.github.io/markdown
https://commonmark.org/help/
https://commonmark.org/help/tutorial/
https://rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
https://rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
https://rmarkdown.rstudio.com/docs/
https://rmarkdown.rstudio.com/lesson-1.html
https://rmarkdown.rstudio.com/gallery.html
https://rmarkdown.rstudio.com/articles.html
http://yihui.name/knitr/


Chapter 2. Some R basics

2.6.2.4. Git and GitHub resources

• Happy Git: Great resource for using Git and GitHub

• Version control with RStudio: RStudio document for using version control

• Using Git from RStudio: Good 10 minute guide

• The R Class: In depth guide to using Git and GitHub with RStudio

2.6.2.5. R programming

• R Programming for Data Science: In depth guide to R programming

• R for Data Science: Fantastic book, tidyverse orientated

2.7. Saving stuff in R

Your approach to saving work in R and RStudio depends on what you want to save. Most of the time the only thing

you will need to save is the R code in your script(s). Remember your script is a reproducible record of everything

you’ve done so all you need to do is open up your script in a new RStudio session and source it into the R Console

and you’re back to where you left off.

Unless you’ve followed our suggestion about changing the default settings for RStudio Projects (see Section 1.5) you

will be asked whether you want to save your workspace image every time you exit RStudio. We suggest that 99.9%

of the time that you don’t want do this. By starting with a clean RStudio session each time we come back to our

analysis we can be sure to avoid any potential conflicts with things we’ve done in previous sessions.

There are, however, some occasions when saving objects you’ve created in R is useful. For example, let’s say you’re

creating an object that takes hours (even days) of computational time to generate. It would be extremely inconvenient

to have to wait all this time each time you come back to your analysis (although we would suggest exporting this to

an external file is a better solution). In this case we can save this object as an external .RData file which we can

load back into RStudio the next time we want to use it. To save an object to an .RData file you can use the save()

function (notice we don’t need to use the assignment operator here)

save(nameOfObject, file = "name_of_file.RData")

or if you want to save all of the objects in your workspace into a single .RData file use the save.image() function

50

https://happygitwithr.com/
https://support.rstudio.com/hc/en-us/articles/200532077-Version-Control-with-Git-and-SVN
https://nceas.github.io/oss-lessons/version-control/4-getting-started-with-git-in-RStudio.html
https://r-bio.github.io/intro-git-rstudio/
https://bookdown.org/rdpeng/rprogdatascience/
https://r4ds.had.co.nz/


2.8. R packages

save.image(file = "name_of_file.RData")

To load your .RData file back into RStudio use the load() function

load(file = "name_of_file.RData")

2.8. R packages

The base installation of R comes with many useful packages as standard. These packages will contain many of the

functions you will use on a daily basis. However, as you start using R for more diverse projects (and as your own use

of R evolves) you will find that there comes a time when you will need to extend R’s capabilities. Happily, many

thousands of R users have developed useful code and shared this code as installable packages. You can think of a

package as a collection of functions, data and help files collated into a well defined standard structure which you can

download and install in R. These packages can be downloaded from a variety of sources but the most popular are

CRAN, Bioconductor and GitHub. Currently, CRAN hosts over 15000 packages and is the official repository for

user contributed R packages. Bioconductor provides open source software oriented towards bioinformatics and hosts

over 1800 R packages. GitHub is a website that hosts git repositories for all sorts of software and projects (not just

R). Often, cutting edge development versions of R packages are hosted on GitHub so if you need all the new bells

and whistles then this may be an option. However, a potential downside of using the development version of an R

package is that it might not be as stable as the version hosted on CRAN (it’s in development!) and updating packages

won’t be automatic.

2.8.1. Using packages

Once you have installed a package onto your computer it is not immediately available for you to use. To use a package

you first need to load the package by using the library() function. For example, to load the remotes package

you previously installed

library(remotes)

The library() function will also load any additional packages required and may print out additional package

information. It is important to realize that every time you start a new R session (or restore a previously saved session)

you need to load the packages you will be using. We tend to put all our library() statements required for our

analysis near the top of our R scripts to make them easily accessible and easy to add to as our code develops. If you

51

https://cran.r-project.org/web/packages/index.html
https://www.bioconductor.org/
https://github.com/


Chapter 2. Some R basics

try to use a function without first loading the relevant R package you will receive an error message that R could not

find the function. For example, if you try to use the install_github() function without loading the remotes

package first you will receive the following error

install_github("tidyverse/dplyr")

# Error in install_github("tidyverse/dplyr") :

# could not find function "install_github"

Sometimes it can be useful to use a function without first using the library() function. If, for example, you will

only be using one or two functions in your script and don’t want to load all of the other functions in a package then

you can access the function directly by specifying the package name followed by two colons and then the function

name

remotes::install_github("tidyverse/dplyr")

This is how we were able to use the install() and install_github() functions above without first loading the

packages BiocManager and remotes . Most of the time we recommend using the library() function.

2.8.2. Installing R packages

2.8.2.1. CRAN packages

To install a package from CRAN you can use the install.packages() function. For example if you want to install

the remotes package enter the following code into the Console window of RStudio (note: you will need a working

internet connection to do this)

install.packages("remotes", dependencies = TRUE)

You may be asked to select a CRAN mirror, just select ‘0-cloud’ or a mirror near to your location. The dependencies

= TRUE argument ensures that additional packages that are required will also be installed.

It’s good practice to regularly update your previously installed packages to get access to new functionality and bug

fixes. To update CRAN packages you can use the update.packages() function (you will need a working internet

connection for this)

52



2.8. R packages

update.packages(ask = FALSE)

The ask = FALSE argument avoids having to confirm every package download which can be a pain if you have

many packages installed.

2.8.2.2. Bioconductor packages

To install packages from Bioconductor the process is a little different. You first need to install the BiocManager

package. You only need to do this once unless you subsequently reinstall or upgrade R

install.packages("BiocManager", dependencies = TRUE)

Once the BiocManager package has been installed you can either install all of the ‘core’ Bioconductor packages

with

BiocManager::install()

or install specific packages such as the GenomicRanges and edgeR packages

BiocManager::install(c("GenomicRanges", "edgeR"))

To update Bioconductor packages just use the BiocManager::install() function again

BiocManager::install(ask = FALSE)

Again, you can use the ask = FALSE argument to avoid having to confirm every package download.

2.8.2.3. GitHub packages

There are multiple options for installing packages hosted on GitHub. Perhaps the most efficient method is to use the

install_github() function from the remotes package (you installed this package previously (Section 2.8.2.1)).

Before you use the function you will need to know the GitHub username of the repository owner and also the name of

the repository. For example, the development version of dplyr from Hadley Wickham is hosted on the tidyverse

GitHub account and has the repository name ‘dplyr’ (just search for ‘github dplyr’). To install this version from

GitHub use

53

https://cran.r-project.org/web/packages/BiocManager/vignettes/BiocManager.html


Chapter 2. Some R basics

remotes::install_github("tidyverse/dplyr")

The safest way (that we know of) to update a package installed from GitHub is to just reinstall it using the above

command.

54



Chapter 3
Data

Until now, you’ve created fairly simple data in R and stored it as a vector (Section 2.4). However, most (if not all)

of you will have much more complicated datasets from your various experiments and surveys that go well beyond

what a vector can handle. Learning how R deals with different types of data and data structures, how to import your

data into R and how to manipulate and summarize your data are some of the most important skills you will need to

master.

In this Chapter we’ll go over the main data types in R and focus on some of the most common data structures. We

will also cover how to import data into R from an external file, how to manipulate (wrangle) and summarize data and

finally how to export data from R to an external file.

3.1. Data types

Understanding the different types of data and how R deals with these data is important. The temptation is to glaze

over and skip these technical details, but beware, this can come back to bite you somewhere unpleasant if you don’t

pay attention. We’ve already seen an example (Section 2.3.1) of this when we tried (and failed) to add two character

objects together using the + operator.

R has six basic types of data; numeric, integer, logical, complex and character. The keen eyed among you will notice

we’ve only listed five data types here, the final data type is raw which we won’t cover as it’s not useful 99.99% of the

time. We also won’t cover complex numbers, but will let you imagine that part!

• Numeric data are numbers that contain a decimal. Actually they can also be whole numbers but we’ll gloss

over that.

• Integers are whole numbers (those numbers without a decimal point).

55

https://www.mathsisfun.com/numbers/complex-numbers.html


Chapter 3. Data

• Logical data take on the value of either TRUE or FALSE. There’s also another special type of logical called NA

to represent missing values.

• Character data are used to represent string values. You can think of character strings as something like a

word (or multiple words). A special type of character string is a factor, which is a string but with additional

attributes (like levels or an order). We’ll cover factors later.

R is (usually) able to automatically distinguish between different classes of data by their nature and the context

in which they’re used although you should bear in mind that R can’t actually read your mind and you may have

to explicitly tell R how you want to care a data type. You can find out the type (or class) of any object using the

class() function.

num <- 2.2

class(num)

[1] "numeric"

char <- "hello"

class(char)

[1] "character"

logi <- TRUE

class(logi)

[1] "logical"

Alternatively, you can ask if an object is a specific class using using a logical test. The is.[classOfData]() family

of functions will return either a TRUE or a FALSE.

is.numeric(num)

[1] TRUE

56



3.1. Data types

is.character(num)

[1] FALSE

is.character(char)

[1] TRUE

is.logical(logi)

[1] TRUE

It can sometimes be useful to be able to change the class of a variable using the as.[className]() family of

coercion functions, although you need to be careful when doing this as you might receive some unexpected results

(see what happens below when we try to convert a character string to a numeric).

# coerce numeric to character

class(num)

[1] "numeric"

num_char <- as.character(num)

num_char

[1] "2.2"

class(num_char)

[1] "character"

# coerce character to numeric!

class(char)

[1] "character"

57



Chapter 3. Data

char_num <- as.numeric(char)

Warning: NAs introduced by coercion

Here’s a summary table of some of the logical test and coercion functions available to you.

Type Logical test Coercing

Character is.character as.character

Numeric is.numeric as.numeric

Logical is.logical as.logical

Factor is.factor as.factor

Complex is.complex as.complex

3.2. Data structures

Now that you’ve been introduced to some of the most important classes of data in R, let’s have a look at some of

main structures that we have for storing these data.

3.2.1. Scalars and vectors

Perhaps the simplest type of data structure is the vector. You’ve already been introduced to vectors in Section 2.4

although some of the vectors you created only contained a single value. Vectors that have a single value (length 1)

are called scalars. Vectors can contain numbers, characters, factors or logicals, but the key thing to remember is

that all the elements inside a vector must be of the same class. In other words, vectors can contain either numbers,

characters or logical but not mixtures of these types of data. There is one important exception to this, you can include

NA (remember this is special type of logical) to denote missing data in vectors with other data types.

3.2.2. Matrices and arrays

Another useful data structure used in many disciplines such as population ecology, theoretical and applied statis-

tics is the matrix. A matrix is simply a vector that has additional attributes called dimensions. Arrays are just

multidimensional matrices. Again, matrices and arrays must contain elements all of the same data class.

58



3.2. Data structures

Figure 3.1.: Scalar and vector data structure

Figure 3.2.: Matrix and array data structure

59



Chapter 3. Data

A convenient way to create a matrix or an array is to use the matrix() and array() functions respectively. Below,

we will create a matrix from a sequence 1 to 16 in four rows (nrow = 4) and fill the matrix row-wise (byrow =

TRUE) rather than the default column-wise. When using the array() function we define the dimensions using the

dim = argument, in our case 2 rows, 4 columns in 2 different matrices.

my_mat <- matrix(1:16, nrow = 4, byrow = TRUE)

my_mat

[,1] [,2] [,3] [,4]

[1,] 1 2 3 4

[2,] 5 6 7 8

[3,] 9 10 11 12

[4,] 13 14 15 16

my_array <- array(1:16, dim = c(2, 4, 2))

my_array

, , 1

[,1] [,2] [,3] [,4]

[1,] 1 3 5 7

[2,] 2 4 6 8

, , 2

[,1] [,2] [,3] [,4]

[1,] 9 11 13 15

[2,] 10 12 14 16

Sometimes it’s also useful to define row and column names for your matrix but this is not a requirement. To do this

use the rownames() and colnames() functions.

60



3.2. Data structures

rownames(my_mat) <- c("A", "B", "C", "D")

colnames(my_mat) <- c("a", "b", "c", "d")

my_mat

a b c d

A 1 2 3 4

B 5 6 7 8

C 9 10 11 12

D 13 14 15 16

Once you’ve created your matrices you can do useful stuff with them and as you’d expect, R has numerous built in

functions to perform matrix operations. Some of the most common are given below. For example, to transpose a

matrix we use the transposition function t()

my_mat_t <- t(my_mat)

my_mat_t

A B C D

a 1 5 9 13

b 2 6 10 14

c 3 7 11 15

d 4 8 12 16

To extract the diagonal elements of a matrix and store them as a vector we can use the diag() function

my_mat_diag <- diag(my_mat)

my_mat_diag

[1] 1 6 11 16

The usual matrix addition, multiplication etc can be performed. Note the use of the %*% operator to perform matrix

multiplication.

61



Chapter 3. Data

mat.1 <- matrix(c(2, 0, 1, 1), nrow = 2) # notice that the matrix has been filled

mat.1 # column-wise by default

[,1] [,2]

[1,] 2 1

[2,] 0 1

mat.2 <- matrix(c(1, 1, 0, 2), nrow = 2)

mat.2

[,1] [,2]

[1,] 1 0

[2,] 1 2

mat.1 + mat.2 # matrix addition

[,1] [,2]

[1,] 3 1

[2,] 1 3

mat.1 * mat.2 # element by element products

[,1] [,2]

[1,] 2 0

[2,] 0 2

mat.1 %*% mat.2 # matrix multiplication

[,1] [,2]

[1,] 3 2

[2,] 1 2

62



3.2. Data structures

3.2.3. Lists

The next data structure we will quickly take a look at is a list. Whilst vectors and matrices are constrained to contain

data of the same type, lists are able to store mixtures of data types. In fact we can even store other data structures

such as vectors and arrays within a list or even have a list of a list. This makes for a very flexible data structure which

is ideal for storing irregular or non-rectangular data (see Chapter 5 for an example).

To create a list we can use the list() function. Note how each of the three list elements are of different classes

(character, logical, and numeric) and are of different lengths.

list_1 <- list(

c("black", "yellow", "orange"),

c(TRUE, TRUE, FALSE, TRUE, FALSE, FALSE),

matrix(1:6, nrow = 3)

)

list_1

[[1]]

[1] "black" "yellow" "orange"

[[2]]

[1] TRUE TRUE FALSE TRUE FALSE FALSE

[[3]]

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

Elements of the list can be named during the construction of the list

list_2 <- list(

colours = c("black", "yellow", "orange"),

evaluation = c(TRUE, TRUE, FALSE, TRUE, FALSE, FALSE),

time = matrix(1:6, nrow = 3)

63



Chapter 3. Data

)

list_2

$colours

[1] "black" "yellow" "orange"

$evaluation

[1] TRUE TRUE FALSE TRUE FALSE FALSE

$time

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

or after the list has been created using the names() function

names(list_1) <- c("colours", "evaluation", "time")

list_1

$colours

[1] "black" "yellow" "orange"

$evaluation

[1] TRUE TRUE FALSE TRUE FALSE FALSE

$time

[,1] [,2]

[1,] 1 4

[2,] 2 5

[3,] 3 6

64



3.2. Data structures

3.2.4. Data frames

By far the most commonly used data structure to store data in is the data frame. A data frame is a powerful two-

dimensional object made up of rows and columns which looks superficially very similar to a matrix. However, whilst

matrices are restricted to containing data all of the same type, data frames can contain a mixture of different types of

data. Typically, in a data frame each row corresponds to an individual observation and each column corresponds

to a different measured or recorded variable. This setup may be familiar to those of you who use LibreOffice Calc

or Microsoft Excel to manage and store your data. Perhaps a useful way to think about data frames is that they are

essentially made up of a bunch of vectors (columns) with each vector containing its own data type but the data type

can be different between vectors.

As an example, the data frame below contains the results of an experiment to determine the effect of parental care

(with or without) of unicorns (Unicornus magnificens) on offsprings growth under 3 different food availability regime.

The data frame has 8 variables (columns) and each row represents an individual unicorn. The variables care and

food are factors (categorical variables). The p_care variable has 2 levels (care and no_care) and the food level

variable has 3 levels (low, medium and high). The variables height, weight, mane_size and fluffyness are

numeric and the variable horn_rings is an integer representing the number of rings on the horn. Although the

variable block has numeric values, these do not really have any order and could also be treated as a factor (i.e. they

could also have been called A and B).

Table 3.2.: Imported unicorn data

p_care food block height weight mane_size fluffyness horn_rings

care medium 1 7.5 7.62 11.7 31.9 1

care medium 1 10.7 12.14 14.1 46.0 10

care medium 1 11.2 12.76 7.1 66.7 10

care medium 1 10.4 8.78 11.9 20.3 1

care medium 1 10.4 13.58 14.5 26.9 4

care medium 1 9.8 10.08 12.2 72.7 9

no_care low 2 3.7 8.10 10.5 60.5 6

no_care low 2 3.2 7.45 14.1 38.1 4

no_care low 2 3.9 9.19 12.4 52.6 9

no_care low 2 3.3 8.92 11.6 55.2 6

no_care low 2 5.5 8.44 13.5 77.6 9

no_care low 2 4.4 10.60 16.2 63.3 6

65

https://en.wikipedia.org/wiki/Categorical_variable


Chapter 3. Data

There are a couple of important things to bear in mind about data frames. These types of objects are known as

rectangular data (or tidy data) as each column must have the same number of observations. Also, any missing data

should be recorded as an NA just as we did with our vectors.

We can construct a data frame from existing data objects such as vectors using the data.frame() function. As

an example, let’s create three vectors p.height, p.weight and p.names and include all of these vectors in a data

frame object called dataf.

p.height <- c(180, 155, 160, 167, 181)

p.weight <- c(65, 50, 52, 58, 70)

p.names <- c("Joanna", "Charlotte", "Helen", "Karen", "Amy")

dataf <- data.frame(height = p.height, weight = p.weight, names = p.names)

dataf

height weight names

180 65 Joanna

155 50 Charlotte

160 52 Helen

167 58 Karen

181 70 Amy

You’ll notice that each of the columns are named with variable name we supplied when we used the data.frame()

function. It also looks like the first column of the data frame is a series of numbers from one to five. Actually, this is

not really a column but the name of each row. We can check this out by getting R to return the dimensions of the

dataf object using the dim() function. We see that there are 5 rows and 3 columns.

dim(dataf) # 5 rows and 3 columns

[1] 5 3

Another really useful function which we use all the time is str() which will return a compact summary of the

structure of the data frame object (or any object for that matter).

66



3.2. Data structures

str(dataf)

'data.frame': 5 obs. of 3 variables:

$ height: num 180 155 160 167 181

$ weight: num 65 50 52 58 70

$ names : chr "Joanna" "Charlotte" "Helen" "Karen" ...

The str() function gives us the data frame dimensions and also reminds us that dataf is a data.frame type object.

It also lists all of the variables (columns) contained in the data frame, tells us what type of data the variables contain

and prints out the first five values. We often copy this summary and place it in our R scripts with comments at the

beginning of each line so we can easily refer back to it whilst writing our code. We showed you how to comment

blocks in RStudio Section 1.7.

Also notice that R has automatically decided that our p.names variable should be a character (chr) class variable

when we first created the data frame. Whether this is a good idea or not will depend on how you want to use this

variable in later analysis. If we decide that this wasn’t such a good idea we can change the default behaviour of the

data.frame() function by including the argument stringsAsFactors = TRUE. Now our strings are automatically

converted to factors.

p.height <- c(180, 155, 160, 167, 181)

p.weight <- c(65, 50, 52, 58, 70)

p.names <- c("Joanna", "Charlotte", "Helen", "Karen", "Amy")

dataf <- data.frame(

height = p.height, weight = p.weight, names = p.names,

stringsAsFactors = TRUE

)

str(dataf)

'data.frame': 5 obs. of 3 variables:

$ height: num 180 155 160 167 181

$ weight: num 65 50 52 58 70

$ names : Factor w/ 5 levels "Amy","Charlotte",..: 4 2 3 5 1

67



Chapter 3. Data

3.3. Importing data

Although creating data frames from existing data structures is extremely useful, by far the most common approach is

to create a data frame by importing data from an external file. To do this, you’ll need to have your data correctly

formatted and saved in a file format that R is able to recognize. Fortunately for us, R is able to recognize a wide

variety of file formats, although in reality you’ll probably end up only using two or three regularly.

3.3.1. Saving files to import

The easiest method of creating a data file to import into R is to enter your data into a spreadsheet using either

Microsoft Excel or LibreOffice Calc and save the spreadsheet as a comma delimited file. We prefer LibreOffice Calc

as it’s open source, platform independent and free but MS Excel is OK too (but see here for some gotchas). Here’s

the data from the petunia experiment we discussed previously displayed in LibreOffice. If you want to follow along

you can download the data file (‘unicorn.xlsx’) from Appendix A.

Figure 3.3.: Unicorn data in LibreOffice Calc

For those of you unfamiliar with the tab delimited file format it simply means that data in different columns are

separated with a ‘,’ character and is usually saved as a file with a ‘.csv’ extension.

To save a spreadsheet as a comma delimited file in LibreOffice Calc select File -> Save as ... from the main

menu. You will need to specify the location you want to save your file in the ‘Save in folder’ option and the name of

the file in the ‘Name’ option. In the drop down menu located above the ‘Save’ button change the default ‘All formats’

to ‘Text CSV (.csv)’.

Click the Save button and then select the ‘Use Text CSV Format’ option. Click on OK to save the file.

68

https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-1044-7


3.3. Importing data

Figure 3.4.: Choosing csv format when saving with LibreOffice Calc

There are a couple of things to bear in mind when saving files to import into R which will make your life easier in the

long run. Keep your column headings (if you have them) short and informative. Also avoid spaces in your column

headings by replacing them with an underscore or a dot (i.e. replace mane size with mane size or mane.size)

and avoid using special characters (i.e. leaf area (mm^2) or uppercase to simply your life). Remember, if you

have missing data in your data frame (empty cells) you should use an NA to represent these missing values or have an

empty cell. This will keep the data frame tidy.

3.3.2. Import functions

Once you’ve saved your data file in a suitable format we can now read this file into R. The workhorse function

for importing data into R is the read.table() function (we discuss some alternatives later in the chapter). The

read.table() function is a very flexible function with a shed load of arguments (see ?read.table) but it’s quite

simple to use. Let’s import a comma delimited file called unicorns.csv which contains the data we saw previously

in this Chapter (Section 3.2.4) and assign it to an object called unicorns. The file is located in a data directory

which itself is located in our root directory (Section 1.4). The first row of the data contains the variable (column)

names. To use the read.table() function to import this file

unicorns <- read.table(

file = "data/unicorns.csv", header = TRUE, sep = ",", dec = ".",

stringsAsFactors = TRUE

)

There are a few things to note about the above command. First, the file path and the filename (including the

69



Chapter 3. Data

file extension) needs to be enclosed in either single or double quotes (i.e. the data/unicorns.txt bit) as the

read.table() function expects this to be a character string. If your working directory is already set to the directory

which contains the file, you don’t need to include the entire file path just the filename. In the example above, the

file path is separated with a single forward slash /. This will work regardless of the operating system you are using

and we recommend you stick with this. However, Windows users may be more familiar with the single backslash

notation and if you want to keep using this you will need to include them as double backslashes.

Exclamation-Triangle Warning

Note though that the double backslash notation will not work on computers using Mac OSX or Linux operating

systems. We thus strongly discourage it since it is not reproducible

The header = TRUE argument specifies that the first row of your data contains the variable names (i.e. food, block

etc). If this is not the case you can specify header = FALSE (actually, this is the default value so you can omit this

argument entirely). The sep = "," argument tells R what is file delimiter.

Other useful arguments include dec = and na.strings =. The dec = argument allows you to change the default

character (.) used for a decimal point. This is useful if you’re in a country where decimal places are usually

represented by a comma (i.e. dec = ","). The na.strings = argument allows you to import data where missing

values are represented with a symbol other than NA. This can be quite common if you are importing data from other

statistical software such as Minitab which represents missing values as a * (na.strings = "*").

Honestly, from the read.table() a series of predefined functions are available. They are all using read.table()

but define format specific options. We can simply read.csv()to read a csv file, with “,” separation and “.” for

decimals. In countries were “,” is used for decimals, csv files use “;” as a separator. In this case using read.csv2()

would be needed. When working with tab delimited files, the functions read.delim() and read.delim2() can

be used with “.” and “,” as decimal respectively.

After importing our data into R , to see the contents of the data frame we could just type the name of the object as we

have done previously. BUT before you do that, think about why you’re doing this. If your data frame is anything

other than tiny, all you’re going to do is fill up your Console with data. It’s not like you can easily check whether

there are any errors or that your data has been imported correctly. A much better solution is to use our old friend the

str() function to return a compact and informative summary of your data frame.

str(unicorns)

'data.frame': 96 obs. of 8 variables:

70



3.3. Importing data

$ p_care : Factor w/ 2 levels "care","no_care": 1 1 1 1 1 1 1 1 1 1 ...

$ food : Factor w/ 3 levels "high","low","medium": 3 3 3 3 3 3 3 3 3 3 ...

$ block : int 1 1 1 1 1 1 1 1 2 2 ...

$ height : num 7.5 10.7 11.2 10.4 10.4 9.8 6.9 9.4 10.4 12.3 ...

$ weight : num 7.62 12.14 12.76 8.78 13.58 ...

$ mane_size : num 11.7 14.1 7.1 11.9 14.5 12.2 13.2 14 10.5 16.1 ...

$ fluffyness: num 31.9 46 66.7 20.3 26.9 72.7 43.1 28.5 57.8 36.9 ...

$ horn_rings: int 1 10 10 1 4 9 7 6 5 8 ...

Here we see that unicorns is a ‘data.frame’ object which contains 96 rows and 8 variables (columns). Each of the

variables are listed along with their data class and the first 10 values. As we mentioned previously in this Chapter, it

can be quite convenient to copy and paste this into your R script as a comment block for later reference.

Notice also that your character string variables (care and food) have been imported as factors because we

used the argument stringsAsFactors = TRUE. If this is not what you want you can prevent this by using the

stringsAsFactors = FALSE or from R version 4.0.0 you can just leave out this argument as stringsAsFactors

= FALSE is the default.

unicorns <- read.delim(file = "data/unicorns.txt")

str(unicorns)

'data.frame': 96 obs. of 8 variables:

$ p_care : chr "care" "care" "care" "care" ...

$ food : chr "medium" "medium" "medium" "medium" ...

$ block : int 1 1 1 1 1 1 1 1 2 2 ...

$ height : num 7.5 10.7 11.2 10.4 10.4 9.8 6.9 9.4 10.4 12.3 ...

$ weight : num 7.62 12.14 12.76 8.78 13.58 ...

$ mane_size : num 11.7 14.1 7.1 11.9 14.5 12.2 13.2 14 10.5 16.1 ...

$ fluffyness: num 31.9 46 66.7 20.3 26.9 72.7 43.1 28.5 57.8 36.9 ...

$ horn_rings: int 1 10 10 1 4 9 7 6 5 8 ...

If we just wanted to see the names of our variables (columns) in the data frame we can use the names() function

which will return a character vector of the variable names.

71



Chapter 3. Data

names(unicorns)

[1] "p_care" "food" "block" "height" "weight"

[6] "mane_size" "fluffyness" "horn_rings"

You can even import spreadsheet files from MS Excel or other statistics software directly into R but our advice is that

this should generally be avoided if possible as it just adds a layer of uncertainty between you and your data. In our

opinion it’s almost always better to export your spreadsheets as tab or comma delimited files and then import them

into R using one of the read.table() derivative function. If you’re hell bent on directly importing data from other

software you will need to install the foreign package which has functions for importing Minitab, SPSS, Stata and

SAS files. For MS Excel and LO Calc spreadsheets, there are a few packages that can be used.

3.3.3. Common import frustrations

It’s quite common to get a bunch of really frustrating error messages when you first start importing data into R.

Perhaps the most common is

Error in file(file, "rt") : cannot open the connection

In addition: Warning message:

In file(file, "rt") :

cannot open file 'unicorns.txt': No such file or directory

This error message is telling you that R cannot find the file you are trying to import. It usually rears its head for one

of a couple of reasons (or all of them!). The first is that you’ve made a mistake in the spelling of either the filename or

file path. Another common mistake is that you have forgotten to include the file extension in the filename (i.e. .txt).

Lastly, the file is not where you say it is or you’ve used an incorrect file path. Using RStudio Projects (Section 1.5)

and having a logical directory structure (Section 1.4) goes a long way to avoiding these types of errors.

Another really common mistake is to forget to include the header = TRUE argument when the first row of the data

contains variable names. For example, if we omit this argument when we import our unicorns.txt file everything

looks OK at first (no error message at least)

unicorns_bad <- read.table(file = "data/unicorns.txt", sep = "\t")

but when we take a look at our data frame using str()

72



3.3. Importing data

str(unicorns_bad)

'data.frame': 97 obs. of 8 variables:

$ V1: chr "p_care" "care" "care" "care" ...

$ V2: chr "food" "medium" "medium" "medium" ...

$ V3: chr "block" "1" "1" "1" ...

$ V4: chr "height" "7.5" "10.7" "11.2" ...

$ V5: chr "weight" "7.62" "12.14" "12.76" ...

$ V6: chr "mane_size" "11.7" "14.1" "7.1" ...

$ V7: chr "fluffyness" "31.9" "46" "66.7" ...

$ V8: chr "horn_rings" "1" "10" "10" ...

We can see an obvious problem, all of our variables have been imported as factors and our variables are named V1,

V2, V3 … V8. The problem happens because we haven’t told the read.table() function that the first row contains

the variable names and so it treats them as data. As soon as we have a single character string in any of our data

vectors, R treats the vectors as character type data (remember all elements in a vector must contain the same type of

data (Section 3.2.1)).

This is just one more argument to use read.csv() or read.delim() function with appropriate default values for

arguments.

3.3.4. Other import options

There are numerous other functions to import data from a variety of sources and formats. Most of these functions are

contained in packages that you will need to install before using them. We list a couple of the more useful packages

and functions below.

The fread() function from the data.table package is great for importing large data files quickly and efficiently

(much faster than the read.table() function). One of the great things about the fread() function is that it

will automatically detect many of the arguments you would normally need to specify (like sep = etc). One of

the things you will need to consider though is that the fread() function will return a data.table object not a

data.frame as would be the case with the read.table() function. This is usually not a problem as you can pass

a data.table object to any function that only accepts data.frame objects. To learn more about the differences

between data.table and data.frame objects see here.

73

http://datatable.r-forge.r-project.org/datatable-intro.pdf


Chapter 3. Data

library(data.table)

all_data <- fread(file = "data/unicorns.txt")

Various functions from the readr package are also very efficient at reading in large data files. The readr package

is part of the ‘tidyverse’ collection of packages and provides many equivalent functions to base R for importing

data. The readr functions are used in a similar way to the read.table() or read.csv() functions and many

of the arguments are the same (see ?readr::read_table for more details). There are however some differences.

For example, when using the read_table() function the header = TRUE argument is replaced by col_names =

TRUE and the function returns a tibble class object which is the tidyverse equivalent of a data.frame object (see

here for differences).

Exclamation-Triangle Warning

Some functions are not happy to handle the data format produced by tidyverse and might require you to

transform them to data.frame format using data.frame().

library(readr)

# import white space delimited files

all_data <- read_table(file = "data/unicorns.txt", col_names = TRUE)

# import comma delimited files

all_data <- read_csv(file = "data/unicorns.csv")

# import tab delimited files

all_data <- read_delim(file = "data/unicorns.txt", delim = "\t")

# or use

all_data <- read_tsv(file = "data/unicorns.txt")

If your data file is ginormous, then the ff and bigmemory packages may be useful as they both contain import

functions that are able to store large data in a memory efficient manner. You can find out more about these functions

here and here.

74

https://www.tidyverse.org/
https://blog.rstudio.com/2016/03/24/tibble-1-0-0/
https://www.rdocumentation.org/packages/ff/versions/2.2-14/topics/read.table.ffdf
https://cran.r-project.org/web/packages/bigmemory/bigmemory.pdf


3.4. Wrangling data frames

3.4. Wrangling data frames

Now that you’re able to successfully import your data from an external file into R our next task is to do something

useful with our data. Working with data is a fundamental skill which you’ll need to develop and get comfortable

with as you’ll likely do a lot of it during any project. The good news is that R is especially good at manipulating,

summarising and visualising data. Manipulating data (often known as data wrangling or munging) in R can at first

seem a little daunting for the new user but if you follow a few simple logical rules then you’ll quickly get the hang of

it, especially with some practice.

Let’s remind ourselves of the structure of the unicorns data frame we imported in the previous section.

unicorns <- read.table(file = "data/unicorns.txt", header = TRUE, sep = "\t")

str(unicorns)

'data.frame': 96 obs. of 8 variables:

$ p_care : chr "care" "care" "care" "care" ...

$ food : chr "medium" "medium" "medium" "medium" ...

$ block : int 1 1 1 1 1 1 1 1 2 2 ...

$ height : num 7.5 10.7 11.2 10.4 10.4 9.8 6.9 9.4 10.4 12.3 ...

$ weight : num 7.62 12.14 12.76 8.78 13.58 ...

$ mane_size : num 11.7 14.1 7.1 11.9 14.5 12.2 13.2 14 10.5 16.1 ...

$ fluffyness: num 31.9 46 66.7 20.3 26.9 72.7 43.1 28.5 57.8 36.9 ...

$ horn_rings: int 1 10 10 1 4 9 7 6 5 8 ...

To access the data in any of the variables (columns) in our data frame we can use the $ notation. For example,

to access the height variable in our unicorns data frame we can use unicorns$height. This tells R that the

height variable is contained within the data frame unicorns.

unicorns$height

[1] 7.5 10.7 11.2 10.4 10.4 9.8 6.9 9.4 10.4 12.3 10.4 11.0 7.1 6.0 9.0

[16] 4.5 12.6 10.0 10.0 8.5 14.1 10.1 8.5 6.5 11.5 7.7 6.4 8.8 9.2 6.2

[31] 6.3 17.2 8.0 8.0 6.4 7.6 9.7 12.3 9.1 8.9 7.4 3.1 7.9 8.8 8.5

[46] 5.6 11.5 5.8 5.6 5.3 7.5 4.1 3.5 8.5 4.9 2.5 5.4 3.9 5.8 4.5

[61] 8.0 1.8 2.2 3.9 8.5 8.5 6.4 1.2 2.6 10.9 7.2 2.1 4.7 5.0 6.5

75



Chapter 3. Data

[76] 2.6 6.0 9.3 4.6 5.2 3.9 2.3 5.2 2.2 4.5 1.8 3.0 3.7 2.4 5.7

[91] 3.7 3.2 3.9 3.3 5.5 4.4

This will return a vector of the height data. If we want we can assign this vector to another object and do stuff with

it, like calculate a mean or get a summary of the variable using the summary() function.

f_height <- unicorns$height

mean(f_height)

[1] 6.839583

summary(f_height)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.200 4.475 6.450 6.840 9.025 17.200

Or if we don’t want to create an additional object we can use functions ‘on-the-fly’ to only display the value in the

console.

mean(unicorns$height)

[1] 6.839583

summary(unicorns$height)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.200 4.475 6.450 6.840 9.025 17.200

Just as we did with vectors (Section 2.5), we also can access data in data frames using the square bracket [ ] notation.

However, instead of just using a single index, we now need to use two indexes, one to specify the rows and one for

the columns. To do this, we can use the notation my_data[rows, columns] where rows and columns are indexes

and my_data is the name of the data frame. Again, just like with our vectors our indexes can be positional or the

result of a logical test.

76



3.4. Wrangling data frames

3.4.1. Positional indexes

To use positional indexes we simple have to write the position of the rows and columns we want to extract inside

the [ ]. For example, if for some reason we wanted to extract the first value (1st row ) of the height variable (4th

column)

unicorns[1, 4]

[1] 7.5

# this would give you the same

unicorns$height[1]

[1] 7.5

We can also extract values from multiple rows or columns by specifying these indexes as vectors inside the [ ]. To

extract the first 10 rows and the first 4 columns we simple supply a vector containing a sequence from 1 to 10 for the

rows index (1:10) and a vector from 1 to 4 for the column index (1:4).

unicorns[1:10, 1:4]

p_care food block height

care medium 1 7.5

care medium 1 10.7

care medium 1 11.2

care medium 1 10.4

care medium 1 10.4

care medium 1 9.8

care medium 1 6.9

care medium 1 9.4

care medium 2 10.4

care medium 2 12.3

Or for non sequential rows and columns then we can supply vectors of positions using the c() function. To extract

the 1st, 5th, 12th, 30th rows from the 1st, 3rd, 6th and 8th columns

77



Chapter 3. Data

unicorns[c(1, 5, 12, 30), c(1, 3, 6, 8)]

p_care block mane_size horn_rings

1 care 1 11.7 1

5 care 1 14.5 4

12 care 2 12.6 6

30 care 2 11.6 5

All we are doing in the two examples above is creating vectors of positions for the rows and columns that we want to

extract. We have done this by using the skills we developed in Section 2.4 when we generated vectors using the c()

function or using the : notation.

But what if we want to extract either all of the rows or all of the columns? It would be extremely tedious to have to

generate vectors for all rows or for all columns. Thankfully R has a shortcut. If you don’t specify either a row or

column index in the [ ] then R interprets it to mean you want all rows or all columns. For example, to extract the

first 4 rows and all of the columns in the unicorns data frame

unicorns[1:4, ]

p_care food block height weight mane_size fluffyness horn_rings

care medium 1 7.5 7.62 11.7 31.9 1

care medium 1 10.7 12.14 14.1 46.0 10

care medium 1 11.2 12.76 7.1 66.7 10

care medium 1 10.4 8.78 11.9 20.3 1

or all of the rows and the first 3 columns1.

unicorns[, 1:3]

p_care food block

1 care medium 1

1For space and simplicity we are just showing the first and last five rows

78



3.4. Wrangling data frames

p_care food block

2 care medium 1

3 care medium 1

4 care medium 1

5 care medium 1

92 no_care low 2

93 no_care low 2

94 no_care low 2

95 no_care low 2

96 no_care low 2

We can even use negative positional indexes to exclude certain rows and columns. As an example, lets extract all of

the rows except the first 85 rows and all columns except the 4th, 7th and 8th columns. Notice we need to use -() when

we generate our row positional vectors. If we had just used -1:85 this would actually generate a regular sequence

from -1 to 85 which is not what we want (we can of course use -1:-85).

unicorns[-(1:85), -c(4, 7, 8)]

p_care food block weight mane_size

86 no_care low 1 6.01 17.6

87 no_care low 1 9.93 12.0

88 no_care low 1 7.03 7.9

89 no_care low 2 9.10 14.5

90 no_care low 2 9.05 9.6

91 no_care low 2 8.10 10.5

92 no_care low 2 7.45 14.1

93 no_care low 2 9.19 12.4

94 no_care low 2 8.92 11.6

95 no_care low 2 8.44 13.5

96 no_care low 2 10.60 16.2

In addition to using a positional index for extracting particular columns (variables) we can also name the variables

79



Chapter 3. Data

directly when using the square bracket [ ] notation. For example, let’s extract the first 5 rows and the variables

care, food and mane_size. Instead of using unicorns[1:5, c(1, 2, 6)] we can instead use

unicorns[1:5, c("p_care", "food", "mane_size")]

p_care food mane_size

care medium 11.7

care medium 14.1

care medium 7.1

care medium 11.9

care medium 14.5

We often use this method in preference to the positional index for selecting columns as it will still give us what we

want even if we’ve changed the order of the columns in our data frame for some reason.

3.4.2. Logical indexes

Just as we did with vectors, we can also extract data from our data frame based on a logical test. We can use all of

the logical operators that we used for our vector examples so if these have slipped your mind maybe have a look

at Section 2.5.1.1 and refresh your memory. Let’s extract all rows where height is greater than 12 and extract all

columns by default (remember, if you don’t include a column index after the comma it means all columns).

big_unicorns <- unicorns[unicorns$height > 12, ]

big_unicorns

p_care food block height weight mane_size fluffyness horn_rings

10 care medium 2 12.3 13.48 16.1 36.9 8

17 care high 1 12.6 18.66 18.6 54.0 9

21 care high 1 14.1 19.12 13.1 113.2 13

32 care high 2 17.2 19.20 10.9 89.9 14

38 care low 1 12.3 11.27 13.7 28.7 5

Notice in the code above that we need to use the unicorns$height notation for the logical test. If we just named

the height variable without the name of the data frame we would receive an error telling us R couldn’t find the

80



3.4. Wrangling data frames

variable height. The reason for this is that the height variable only exists inside the unicorns data frame so you

need to tell R exactly where it is.

big_unicorns <- unicorns[height > 12, ]

Error in `[.data.frame`(unicorns, height > 12, ) :

object 'height' not found

So how does this work? The logical test is unicorns$height > 12 and R will only extract those rows that satisfy

this logical condition. If we look at the output of just the logical condition you can see this returns a vector containing

TRUE if height is greater than 12 and FALSE if height is not greater than 12.

unicorns$height > 12

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE

[13] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

[37] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

So our row index is a vector containing either TRUE or FALSE values and only those rows that are TRUE are selected.

Other commonly used operators are shown below

unicorns[unicorns$height >= 6, ] # values greater or equal to 6

unicorns[unicorns$height <= 6, ] # values less than or equal to 6

unicorns[unicorns$height == 8, ] # values equal to 8

unicorns[unicorns$height != 8, ] # values not equal to 8

81



Chapter 3. Data

We can also extract rows based on the value of a character string or factor level. Let’s extract all rows where the

food level is equal to high (again we will output all columns). Notice that the double equals == sign must be used

for a logical test and that the character string must be enclosed in either single or double quotes (i.e. "high").

food_high <- unicorns[unicorns$food == "high", ]

rbind(head(food_high, n = 10), tail(food_high, n = 10))

p_care food block height weight mane_size fluffyness horn_rings

17 care high 1 12.6 18.66 18.6 54.0 9

18 care high 1 10.0 18.07 16.9 90.5 3

19 care high 1 10.0 13.29 15.8 142.7 12

20 care high 1 8.5 14.33 13.2 91.4 5

21 care high 1 14.1 19.12 13.1 113.2 13

22 care high 1 10.1 15.49 12.6 77.2 12

23 care high 1 8.5 17.82 20.5 54.4 3

24 care high 1 6.5 17.13 24.1 147.4 6

25 care high 2 11.5 23.89 14.3 101.5 12

26 care high 2 7.7 14.77 17.2 104.5 4

71 no_care high 1 7.2 15.21 15.9 135.0 14

72 no_care high 1 2.1 19.15 15.6 176.7 6

73 no_care high 2 4.7 13.42 19.8 124.7 5

74 no_care high 2 5.0 16.82 17.3 182.5 15

75 no_care high 2 6.5 14.00 10.1 126.5 7

76 no_care high 2 2.6 18.88 16.4 181.5 14

77 no_care high 2 6.0 13.68 16.2 133.7 2

78 no_care high 2 9.3 18.75 18.4 181.1 16

79 no_care high 2 4.6 14.65 16.7 91.7 11

80 no_care high 2 5.2 17.70 19.1 181.1 8

Or we can extract all rows where food level is not equal to medium (using !=) and only return columns 1 to 4.

food_not_medium <- unicorns[unicorns$food != "medium", 1:4]

rbind(head(food_not_medium, n = 10), tail(food_not_medium, n = 10))

82



3.4. Wrangling data frames

p_care food block height

17 care high 1 12.6

18 care high 1 10.0

19 care high 1 10.0

20 care high 1 8.5

21 care high 1 14.1

22 care high 1 10.1

23 care high 1 8.5

24 care high 1 6.5

25 care high 2 11.5

26 care high 2 7.7

87 no_care low 1 3.0

88 no_care low 1 3.7

89 no_care low 2 2.4

90 no_care low 2 5.7

91 no_care low 2 3.7

92 no_care low 2 3.2

93 no_care low 2 3.9

94 no_care low 2 3.3

95 no_care low 2 5.5

96 no_care low 2 4.4

We can increase the complexity of our logical tests by combining them with Boolean expressions just as we did for

vector objects. For example, to extract all rows where height is greater or equal to 6 AND food is equal to medium

AND care is equal to no_care we combine a series of logical expressions with the & symbol.

low_no_care_heigh6 <- unicorns[unicorns$height >= 6 & unicorns$food == "medium" &

unicorns$p_care == "no_care", ]

low_no_care_heigh6

p_care food block height weight mane_size fluffyness horn_rings

51 no_care medium 1 7.5 13.60 13.6 122.2 11

83

https://en.wikipedia.org/wiki/Boolean_expression


Chapter 3. Data

p_care food block height weight mane_size fluffyness horn_rings

54 no_care medium 1 8.5 10.04 12.3 113.6 4

61 no_care medium 2 8.0 11.43 12.6 43.2 14

To extract rows based on an ‘OR’ Boolean expression we can use the | symbol. Let’s extract all rows where height

is greater than 12.3 OR less than 2.2.

height2.2_12.3 <- unicorns[unicorns$height > 12.3 | unicorns$height < 2.2, ]

height2.2_12.3

p_care food block height weight mane_size fluffyness horn_rings

17 care high 1 12.6 18.66 18.6 54.0 9

21 care high 1 14.1 19.12 13.1 113.2 13

32 care high 2 17.2 19.20 10.9 89.9 14

62 no_care medium 2 1.8 10.47 11.8 120.8 9

68 no_care high 1 1.2 18.24 16.6 148.1 7

72 no_care high 1 2.1 19.15 15.6 176.7 6

86 no_care low 1 1.8 6.01 17.6 46.2 4

An alternative method of selecting parts of a data frame based on a logical expression is to use the subset()

function instead of the [ ]. The advantage of using subset() is that you no longer need to use the $ notation when

specifying variables inside the data frame as the first argument to the function is the name of the data frame to be

subsetted. The disadvantage is that subset() is less flexible than the [ ] notation.

care_med_2 <- subset(unicorns, p_care == "care" & food == "medium" & block == 2)

care_med_2

p_care food block height weight mane_size fluffyness horn_rings

9 care medium 2 10.4 10.48 10.5 57.8 5

10 care medium 2 12.3 13.48 16.1 36.9 8

11 care medium 2 10.4 13.18 11.1 56.8 12

12 care medium 2 11.0 11.56 12.6 31.3 6

84



3.4. Wrangling data frames

p_care food block height weight mane_size fluffyness horn_rings

13 care medium 2 7.1 8.16 29.6 9.7 2

14 care medium 2 6.0 11.22 13.0 16.4 3

15 care medium 2 9.0 10.20 10.8 90.1 6

16 care medium 2 4.5 12.55 13.4 14.4 6

And if you only want certain columns you can use the select = argument.

uni_p_care <- subset(unicorns, p_care == "care" & food == "medium" & block == 2,

select = c("p_care", "food", "mane_size")

)

uni_p_care

p_care food mane_size

9 care medium 10.5

10 care medium 16.1

11 care medium 11.1

12 care medium 12.6

13 care medium 29.6

14 care medium 13.0

15 care medium 10.8

16 care medium 13.4

3.4.3. Ordering data frames

Remember when we used the function order() to order one vector based on the order of another vector (way back

in Section 2.5.3). This comes in very handy if you want to reorder rows in your data frame. For example, if we want

all of the rows in the data frame unicorns to be ordered in ascending value of height and output all columns by

default.

height_ord <- unicorns[order(unicorns$height), ]

head(height_ord, n = 10)

85



Chapter 3. Data

p_care food block height weight mane_size fluffyness horn_rings

68 no_care high 1 1.2 18.24 16.6 148.1 7

62 no_care medium 2 1.8 10.47 11.8 120.8 9

86 no_care low 1 1.8 6.01 17.6 46.2 4

72 no_care high 1 2.1 19.15 15.6 176.7 6

63 no_care medium 2 2.2 10.70 15.3 97.1 7

84 no_care low 1 2.2 9.97 9.6 63.1 2

82 no_care low 1 2.3 7.28 13.8 32.8 6

89 no_care low 2 2.4 9.10 14.5 78.7 8

56 no_care medium 1 2.5 14.85 17.5 77.8 10

69 no_care high 1 2.6 16.57 17.1 141.1 3

We can also order by descending order of a variable (i.e. mane_size) using the decreasing = TRUE argument.

mane_size_ord <- unicorns[order(unicorns$mane_size, decreasing = TRUE), ]

head(mane_size_ord, n = 10)

p_care food block height weight mane_size fluffyness horn_rings

70 no_care high 1 10.9 17.22 49.2 189.6 17

13 care medium 2 7.1 8.16 29.6 9.7 2

24 care high 1 6.5 17.13 24.1 147.4 6

65 no_care high 1 8.5 22.53 20.8 166.9 16

23 care high 1 8.5 17.82 20.5 54.4 3

66 no_care high 1 8.5 17.33 19.8 184.4 12

73 no_care high 2 4.7 13.42 19.8 124.7 5

80 no_care high 2 5.2 17.70 19.1 181.1 8

17 care high 1 12.6 18.66 18.6 54.0 9

49 no_care medium 1 5.6 11.03 18.6 49.9 8

We can even order data frames based on multiple variables. For example, to order the data frame unicorns in

ascending order of both block and height.

86



3.4. Wrangling data frames

block_height_ord <- unicorns[order(unicorns$block, unicorns$height), ]

head(block_height_ord, n = 10)

p_care food block height weight mane_size fluffyness horn_rings

68 no_care high 1 1.2 18.24 16.6 148.1 7

86 no_care low 1 1.8 6.01 17.6 46.2 4

72 no_care high 1 2.1 19.15 15.6 176.7 6

84 no_care low 1 2.2 9.97 9.6 63.1 2

82 no_care low 1 2.3 7.28 13.8 32.8 6

56 no_care medium 1 2.5 14.85 17.5 77.8 10

69 no_care high 1 2.6 16.57 17.1 141.1 3

87 no_care low 1 3.0 9.93 12.0 56.6 6

53 no_care medium 1 3.5 12.93 16.6 109.3 3

88 no_care low 1 3.7 7.03 7.9 36.7 5

What if we wanted to order unicorns by ascending order of block but descending order of height? We can use a

simple trick by adding a - symbol before the unicorns$height variable when we use the order() function. This

will essentially turn all of the height values negative which will result in reversing the order. Note, that this trick

will only work with numeric variables.

block_revheight_ord <- unicorns[order(unicorns$block, -unicorns$height), ]

rbind(head(block_revheight_ord, n = 10), tail(block_revheight_ord, n = 10))

p_care food block height weight mane_size fluffyness horn_rings

21 care high 1 14.1 19.12 13.1 113.2 13

17 care high 1 12.6 18.66 18.6 54.0 9

38 care low 1 12.3 11.27 13.7 28.7 5

3 care medium 1 11.2 12.76 7.1 66.7 10

70 no_care high 1 10.9 17.22 49.2 189.6 17

2 care medium 1 10.7 12.14 14.1 46.0 10

4 care medium 1 10.4 8.78 11.9 20.3 1

5 care medium 1 10.4 13.58 14.5 26.9 4

87



Chapter 3. Data

p_care food block height weight mane_size fluffyness horn_rings

22 care high 1 10.1 15.49 12.6 77.2 12

18 care high 1 10.0 18.07 16.9 90.5 3

64 no_care medium 2 3.9 12.97 17.0 97.5 5

93 no_care low 2 3.9 9.19 12.4 52.6 9

91 no_care low 2 3.7 8.10 10.5 60.5 6

94 no_care low 2 3.3 8.92 11.6 55.2 6

92 no_care low 2 3.2 7.45 14.1 38.1 4

42 care low 2 3.1 8.74 16.1 39.1 3

76 no_care high 2 2.6 18.88 16.4 181.5 14

89 no_care low 2 2.4 9.10 14.5 78.7 8

63 no_care medium 2 2.2 10.70 15.3 97.1 7

62 no_care medium 2 1.8 10.47 11.8 120.8 9

If we wanted to do the same thing with a factor (or character) variable like food we would need to use the function

xtfrm() for this variable inside our order() function.

block_revheight_ord <- unicorns[order(-xtfrm(unicorns$food), unicorns$height), ]

rbind(head(block_revheight_ord, n = 10), tail(block_revheight_ord, n = 10))

p_care food block height weight mane_size fluffyness horn_rings

62 no_care medium 2 1.8 10.47 11.8 120.8 9

63 no_care medium 2 2.2 10.70 15.3 97.1 7

56 no_care medium 1 2.5 14.85 17.5 77.8 10

53 no_care medium 1 3.5 12.93 16.6 109.3 3

58 no_care medium 2 3.9 9.07 9.6 90.4 7

64 no_care medium 2 3.9 12.97 17.0 97.5 5

52 no_care medium 1 4.1 12.58 13.9 136.6 11

16 care medium 2 4.5 12.55 13.4 14.4 6

60 no_care medium 2 4.5 13.68 14.8 125.5 9

55 no_care medium 1 4.9 6.89 8.2 52.9 3

29 care high 2 9.2 13.26 11.3 108.0 9

88



3.4. Wrangling data frames

p_care food block height weight mane_size fluffyness horn_rings

78 no_care high 2 9.3 18.75 18.4 181.1 16

18 care high 1 10.0 18.07 16.9 90.5 3

19 care high 1 10.0 13.29 15.8 142.7 12

22 care high 1 10.1 15.49 12.6 77.2 12

70 no_care high 1 10.9 17.22 49.2 189.6 17

25 care high 2 11.5 23.89 14.3 101.5 12

17 care high 1 12.6 18.66 18.6 54.0 9

21 care high 1 14.1 19.12 13.1 113.2 13

32 care high 2 17.2 19.20 10.9 89.9 14

Notice that the food variable has been reverse ordered alphabetically and height has been ordered by increasing

values within each level of food.

If we wanted to order the data frame by food but this time order it from low -> medium -> high instead of the

default alphabetically (high, low, medium), we need to first change the order of our levels of the food factor in our

data frame using the factor() function. Once we’ve done this we can then use the order() function as usual.

Note, if you’re reading the pdf version of this book, the output has been truncated to save space.

unicorns$food <- factor(unicorns$food,

levels = c("low", "medium", "high")

)

food_ord <- unicorns[order(unicorns$food), ]

rbind(head(food_ord, n = 10), tail(food_ord, n = 10))

p_care food block height weight mane_size fluffyness horn_rings

33 care low 1 8.0 6.88 9.3 16.1 4

34 care low 1 8.0 10.23 11.9 88.1 4

35 care low 1 6.4 5.97 8.7 7.3 2

36 care low 1 7.6 13.05 7.2 47.2 8

37 care low 1 9.7 6.49 8.1 18.0 3

38 care low 1 12.3 11.27 13.7 28.7 5

39 care low 1 9.1 8.96 9.7 23.8 3

89



Chapter 3. Data

p_care food block height weight mane_size fluffyness horn_rings

40 care low 1 8.9 11.48 11.1 39.4 7

41 care low 2 7.4 10.89 13.3 9.5 5

42 care low 2 3.1 8.74 16.1 39.1 3

71 no_care high 1 7.2 15.21 15.9 135.0 14

72 no_care high 1 2.1 19.15 15.6 176.7 6

73 no_care high 2 4.7 13.42 19.8 124.7 5

74 no_care high 2 5.0 16.82 17.3 182.5 15

75 no_care high 2 6.5 14.00 10.1 126.5 7

76 no_care high 2 2.6 18.88 16.4 181.5 14

77 no_care high 2 6.0 13.68 16.2 133.7 2

78 no_care high 2 9.3 18.75 18.4 181.1 16

79 no_care high 2 4.6 14.65 16.7 91.7 11

80 no_care high 2 5.2 17.70 19.1 181.1 8

3.4.4. Adding columns and rows

Sometimes it’s useful to be able to add extra rows and columns of data to our data frames. There are multiple ways

to achieve this (as there always is in R!) depending on your circumstances. To simply append additional rows to an

existing data frame we can use the rbind() function and to append columns the cbind() function. Let’s create a

couple of test data frames to see this in action using our old friend the data.frame() function.

# rbind for rows

df1 <- data.frame(

id = 1:4, height = c(120, 150, 132, 122),

weight = c(44, 56, 49, 45)

)

df1

id height weight

1 120 44

2 150 56

90



3.4. Wrangling data frames

id height weight

3 132 49

4 122 45

df2 <- data.frame(

id = 5:6, height = c(119, 110),

weight = c(39, 35)

)

df2

id height weight

5 119 39

6 110 35

df3 <- data.frame(

id = 1:4, height = c(120, 150, 132, 122),

weight = c(44, 56, 49, 45)

)

df3

id height weight

1 120 44

2 150 56

3 132 49

4 122 45

df4 <- data.frame(location = c("UK", "CZ", "CZ", "UK"))

df4

location

UK

91



Chapter 3. Data

location

CZ

CZ

UK

We can use the rbind() function to append the rows of data in df2 to the rows in df1 and assign the new data frame

to df_rcomb.

df_rcomb <- rbind(df1, df2)

df_rcomb

id height weight

1 120 44

2 150 56

3 132 49

4 122 45

5 119 39

6 110 35

And cbind to append the column in df4 to the df3 data frame and assign to df_ccomb‘.

df_ccomb <- cbind(df3, df4)

df_ccomb

id height weight location

1 120 44 UK

2 150 56 CZ

3 132 49 CZ

4 122 45 UK

Another situation when adding a new column to a data frame is useful is when you want to perform some kind of

transformation on an existing variable. For example, say we wanted to apply a log10 transformation on the height

92



3.4. Wrangling data frames

variable in the df_rcomb data frame we created above. We could just create a separate variable to contains these

values but it’s good practice to create this variable as a new column inside our existing data frame so we keep all of

our data together. Let’s call this new variable height_log10.

# log10 transformation

df_rcomb$height_log10 <- log10(df_rcomb$height)

df_rcomb

id height weight height_log10

1 120 44 2.079181

2 150 56 2.176091

3 132 49 2.120574

4 122 45 2.086360

5 119 39 2.075547

6 110 35 2.041393

This situation also crops up when we want to convert an existing variable in a data frame from one data class to

another data class. For example, the id variable in the df_rcomb data frame is numeric type data (use the str()

or class() functions to check for yourself). If we wanted to convert the id variable to a factor to use later in our

analysis we can create a new variable called Fid in our data frame and use the factor() function to convert the id

variable.

# convert to a factor

df_rcomb$Fid <- factor(df_rcomb$id)

df_rcomb

id height weight height_log10 Fid

1 120 44 2.079181 1

2 150 56 2.176091 2

3 132 49 2.120574 3

4 122 45 2.086360 4

5 119 39 2.075547 5

6 110 35 2.041393 6

93



Chapter 3. Data

str(df_rcomb)

'data.frame': 6 obs. of 5 variables:

$ id : int 1 2 3 4 5 6

$ height : num 120 150 132 122 119 110

$ weight : num 44 56 49 45 39 35

$ height_log10: num 2.08 2.18 2.12 2.09 2.08 ...

$ Fid : Factor w/ 6 levels "1","2","3","4",..: 1 2 3 4 5 6

3.4.5. Merging data frames

Instead of just appending either rows or columns to a data frame we can also merge two data frames together. Let’s

say we have one data frame that contains taxonomic information on some common UK rocky shore invertebrates

(called taxa) and another data frame that contains information on where they are usually found on the rocky shore

(called zone). We can merge these two data frames together to produce a single data frame with both taxonomic

and location information. Let’s first create both of these data frames (in reality you would probably just import your

different datasets).

taxa <- data.frame(

GENUS = c("Patella", "Littorina", "Halichondria", "Semibalanus"),

species = c("vulgata", "littoria", "panacea", "balanoides"),

family = c("patellidae", "Littorinidae", "Halichondriidae", "Archaeobalanidae")

)

taxa

GENUS species family

Patella vulgata patellidae

Littorina littoria Littorinidae

Halichondria panacea Halichondriidae

Semibalanus balanoides Archaeobalanidae

94



3.4. Wrangling data frames

zone <- data.frame(

genus = c(

"Laminaria", "Halichondria", "Xanthoria", "Littorina",

"Semibalanus", "Fucus"

),

species = c(

"digitata", "panacea", "parietina", "littoria",

"balanoides", "serratus"

),

zone = c("v_low", "low", "v_high", "low_mid", "high", "low_mid")

)

zone

genus species zone

Laminaria digitata v_low

Halichondria panacea low

Xanthoria parietina v_high

Littorina littoria low_mid

Semibalanus balanoides high

Fucus serratus low_mid

Because both of our data frames contains at least one variable in common (species in our case) we can simply use

the merge() function to create a new data frame called taxa_zone.

taxa_zone <- merge(x = taxa, y = zone)

taxa_zone

species GENUS family genus zone

balanoides Semibalanus Archaeobalanidae Semibalanus high

littoria Littorina Littorinidae Littorina low_mid

panacea Halichondria Halichondriidae Halichondria low

95



Chapter 3. Data

Notice that the merged data frame contains only the rows that have species information in both data frames. There

are also two columns called GENUS and genus because the merge() function treats these as two different variables

that originate from the two data frames.

If we want to include all data from both data frames then we will need to use the all = TRUE argument. The missing

values will be included as NA.

taxa_zone <- merge(x = taxa, y = zone, all = TRUE)

taxa_zone

species GENUS family genus zone

balanoides Semibalanus Archaeobalanidae Semibalanus high

digitata NA NA Laminaria v_low

littoria Littorina Littorinidae Littorina low_mid

panacea Halichondria Halichondriidae Halichondria low

parietina NA NA Xanthoria v_high

serratus NA NA Fucus low_mid

vulgata Patella patellidae NA NA

If the variable names that you want to base the merge on are different in each data frame (for example GENUS and

genus) you can specify the names in the first data frame (known as x) and the second data frame (known as y) using

the by.x = and by.y = arguments.

taxa_zone <- merge(x = taxa, y = zone, by.x = "GENUS", by.y = "genus", all = TRUE)

taxa_zone

GENUS species.x family species.y zone

Fucus NA NA serratus low_mid

Halichondria panacea Halichondriidae panacea low

Laminaria NA NA digitata v_low

Littorina littoria Littorinidae littoria low_mid

Patella vulgata patellidae NA NA

Semibalanus balanoides Archaeobalanidae balanoides high

96



3.4. Wrangling data frames

GENUS species.x family species.y zone

Xanthoria NA NA parietina v_high

Or using multiple variable names.

taxa_zone <- merge(

x = taxa, y = zone, by.x = c("species", "GENUS"),

by.y = c("species", "genus"), all = TRUE

)

taxa_zone

species GENUS family zone

balanoides Semibalanus Archaeobalanidae high

digitata Laminaria NA v_low

littoria Littorina Littorinidae low_mid

panacea Halichondria Halichondriidae low

parietina Xanthoria NA v_high

serratus Fucus NA low_mid

vulgata Patella patellidae NA

3.4.6. Reshaping data frames

Reshaping data into different formats is a common task. With rectangular type data (data frames have the same

number of rows in each column) there are two main data frame shapes that you will come across: the ‘long’ format

(sometimes called stacked) and the ‘wide’ format. An example of a long format data frame is given below. We can

see that each row is a single observation from an individual subject and each subject can have multiple rows. This

results in a single column of our measurement.

long_data <- data.frame(

subject = rep(c("A", "B", "C", "D"), each = 3),

sex = rep(c("M", "F", "F", "M"), each = 3),

condition = rep(c("control", "cond1", "cond2"), times = 4),

97



Chapter 3. Data

measurement = c(

12.9, 14.2, 8.7, 5.2, 12.6, 10.1, 8.9,

12.1, 14.2, 10.5, 12.9, 11.9

)

)

long_data

subject sex condition measurement

A M control 12.9

A M cond1 14.2

A M cond2 8.7

B F control 5.2

B F cond1 12.6

B F cond2 10.1

C F control 8.9

C F cond1 12.1

C F cond2 14.2

D M control 10.5

D M cond1 12.9

D M cond2 11.9

We can also format the same data in the wide format as shown below. In this format we have multiple observations

from each subject in a single row with measurements in different columns (control, cond1 and cond2). This is a

common format when you have repeated measurements from sampling units.

wide_data <- data.frame(

subject = c("A", "B", "C", "D"),

sex = c("M", "F", "F", "M"),

control = c(12.9, 5.2, 8.9, 10.5),

cond1 = c(14.2, 12.6, 12.1, 12.9),

cond2 = c(8.7, 10.1, 14.2, 11.9)

)

wide_data

98



3.4. Wrangling data frames

subject sex control cond1 cond2

A M 12.9 14.2 8.7

B F 5.2 12.6 10.1

C F 8.9 12.1 14.2

D M 10.5 12.9 11.9

Whilst there’s no inherent problem with either of these formats we will sometimes need to convert between the

two because some functions will require a specific format for them to work. The most common format is the long

format.

There are many ways to convert between these two formats but we’ll use the melt() and dcast() functions from

the reshape2 package (you will need to install this package first). The melt() function is used to convert from

wide to long formats. The first argument for the melt() function is the data frame we want to melt (in our case

wide_data). The id.vars = c("subject", "sex") argument is a vector of the variables you want to stack, the

measured.vars = c("control", "cond1", "cond2") argument identifies the columns of the measurements

in different conditions, the variable.name = "condition" argument specifies what you want to call the stacked

column of your different conditions in your output data frame and value.name = "measurement" is the name of

the column of your stacked measurements in your output data frame.

library(reshape2)

wide_data # remind ourselves what the wide format looks like

subject sex control cond1 cond2

A M 12.9 14.2 8.7

B F 5.2 12.6 10.1

C F 8.9 12.1 14.2

D M 10.5 12.9 11.9

# convert wide to long

my_long_df <- melt(

data = wide_data, id.vars = c("subject", "sex"),

measured.vars = c("control", "cond1", "cond2"),

variable.name = "condition", value.name = "measurement"

99



Chapter 3. Data

)

my_long_df

subject sex condition measurement

A M control 12.9

B F control 5.2

C F control 8.9

D M control 10.5

A M cond1 14.2

B F cond1 12.6

C F cond1 12.1

D M cond1 12.9

A M cond2 8.7

B F cond2 10.1

C F cond2 14.2

D M cond2 11.9

The dcast() function is used to convert from a long format data frame to a wide format data frame. The first

argument is again is the data frame we want to cast (long_data for this example). The second argument is in

formula syntax. The subject + sex bit of the formula means that we want to keep these columns separate, and the

~ condition part is the column that contains the labels that we want to split into new columns in our new data

frame. The value.var = "measurement" argument is the column that contains the measured data.

long_data # remind ourselves what the long format look like

subject sex condition measurement

A M control 12.9

A M cond1 14.2

A M cond2 8.7

B F control 5.2

B F cond1 12.6

B F cond2 10.1

100



3.5. Introduction to the tidyverse

subject sex condition measurement

C F control 8.9

C F cond1 12.1

C F cond2 14.2

D M control 10.5

D M cond1 12.9

D M cond2 11.9

# convert long to wide

my_wide_df <- dcast(

data = long_data, subject + sex ~ condition,

value.var = "measurement"

)

my_wide_df

subject sex cond1 cond2 control

A M 14.2 8.7 12.9

B F 12.6 10.1 5.2

C F 12.1 14.2 8.9

D M 12.9 11.9 10.5

3.5. Introduction to the tidyverse

it seems it is not super tidy in here and we need to improve that

3.6. Summarising data frames

Now that we’re able to manipulate and extract data from our data frames our next task is to start exploring and getting

to know our data. In this section we’ll start producing tables of useful summary statistics of the variables in our data

frame and in the next two Chapters we’ll cover visualising our data with base R graphics and using the ggplot2

package.

101



Chapter 3. Data

A really useful starting point is to produce some simple summary statistics of all of the variables in our unicorns

data frame using the summary() function.

summary(unicorns)

p_care food block height weight

Length:96 low :32 Min. :1.0 Min. : 1.200 Min. : 5.790

Class :character medium:32 1st Qu.:1.0 1st Qu.: 4.475 1st Qu.: 9.027

Mode :character high :32 Median :1.5 Median : 6.450 Median :11.395

Mean :1.5 Mean : 6.840 Mean :12.155

3rd Qu.:2.0 3rd Qu.: 9.025 3rd Qu.:14.537

Max. :2.0 Max. :17.200 Max. :23.890

mane_size fluffyness horn_rings

Min. : 5.80 Min. : 5.80 Min. : 1.000

1st Qu.:11.07 1st Qu.: 39.05 1st Qu.: 4.000

Median :13.45 Median : 70.05 Median : 6.000

Mean :14.05 Mean : 79.78 Mean : 7.062

3rd Qu.:16.45 3rd Qu.:113.28 3rd Qu.: 9.000

Max. :49.20 Max. :189.60 Max. :17.000

For numeric variables (i.e. height, weight etc) the mean, minimum, maximum, median, first (lower) quartile and

third (upper) quartile are presented. For factor variables (i.e. care and food) the number of observations in each of

the factor levels is given. If a variable contains missing data then the number of NA values is also reported.

If we wanted to summarise a smaller subset of variables in our data frame we can use our indexing skills in combination

with the summary() function. For example, to summarise only the height, weight, mane_size and fluffyness

variables we can include the appropriate column indexes when using the [ ]. Notice we include all rows by not

specifying a row index.

summary(unicorns[, 4:7])

height weight mane_size fluffyness

Min. : 1.200 Min. : 5.790 Min. : 5.80 Min. : 5.80

1st Qu.: 4.475 1st Qu.: 9.027 1st Qu.:11.07 1st Qu.: 39.05

Median : 6.450 Median :11.395 Median :13.45 Median : 70.05

102



3.6. Summarising data frames

Mean : 6.840 Mean :12.155 Mean :14.05 Mean : 79.78

3rd Qu.: 9.025 3rd Qu.:14.537 3rd Qu.:16.45 3rd Qu.:113.28

Max. :17.200 Max. :23.890 Max. :49.20 Max. :189.60

# or equivalently

# summary(unicorns[, c("height", "weight", "mane_size", "fluffyness")])

And to summarise a single variable.

summary(unicorns$mane_size)

Min. 1st Qu. Median Mean 3rd Qu. Max.

5.80 11.07 13.45 14.05 16.45 49.20

# or equivalently

# summary(unicorns[, 6])

As you’ve seen above, the summary() function reports the number of observations in each level of our factor variables.

Another useful function for generating tables of counts is the table() function. The table() function can be

used to build contingency tables of different combinations of factor levels. For example, to count the number of

observations for each level of food

table(unicorns$food)

low medium high

32 32 32

We can extend this further by producing a table of counts for each combination of food and care factor levels.

table(unicorns$food, unicorns$p_care)

care no_care

low 16 16

medium 16 16

high 16 16

103



Chapter 3. Data

A more flexible version of the table() function is the xtabs() function. The xtabs() function uses a formula

notation (~) to build contingency tables with the cross-classifying variables separated by a + symbol on the right

hand side of the formula. xtabs() also has a useful data = argument so you don’t have to include the data frame

name when specifying each variable.

xtabs(~ food + p_care, data = unicorns)

p_care

food care no_care

low 16 16

medium 16 16

high 16 16

We can even build more complicated contingency tables using more variables. Note, in the example below the

xtabs() function has quietly coerced our block variable to a factor.

xtabs(~ food + p_care + block, data = unicorns)

, , block = 1

p_care

food care no_care

low 8 8

medium 8 8

high 8 8

, , block = 2

p_care

food care no_care

low 8 8

medium 8 8

high 8 8

104



3.6. Summarising data frames

And for a nicer formatted table we can nest the xtabs() function inside the ftable() function to ‘flatten’ the

table.

ftable(xtabs(~ food + p_care + block, data = unicorns))

block 1 2

food p_care

low care 8 8

no_care 8 8

medium care 8 8

no_care 8 8

high care 8 8

no_care 8 8

We can also summarise our data for each level of a factor variable. Let’s say we want to calculate the mean value

of height for each of our low, meadium and high levels of food. To do this we will use the mean() function and

apply this to the height variable for each level of food using the tapply() function.

tapply(unicorns$height, unicorns$food, mean)

low medium high

5.853125 7.012500 7.653125

The tapply() function is not just restricted to calculating mean values, you can use it to apply many of the functions

that come with R or even functions you’ve written yourself (see Chapter 5 for more details). For example, we can

apply the sd() function to calculate the standard deviation for each level of food or even the summary() function.

tapply(unicorns$height, unicorns$food, sd)

low medium high

2.828425 3.005345 3.483323

tapply(unicorns$height, unicorns$food, summary)

105



Chapter 3. Data

$low

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.800 3.600 5.550 5.853 8.000 12.300

$medium

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.800 4.500 7.000 7.013 9.950 12.300

$high

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.200 5.800 7.450 7.653 9.475 17.200

Note, if the variable you want to summarise contains missing values (NA) you will also need to include an argument

specifying how you want the function to deal with the NA values. We saw an example if this in Section 2.5.5 where

the mean() function returned an NA when we had missing data. To include the na.rm = TRUE argument we simply

add this as another argument when using tapply().

tapply(unicorns$height, unicorns$food, mean, na.rm = TRUE)

low medium high

5.853125 7.012500 7.653125

We can also use tapply() to apply functions to more than one factor. The only thing to remember is that the

factors need to be supplied to the tapply() function in the form of a list using the list() function. To calculate

the mean height for each combination of food and care factor levels we can use the list(unicorns$food,

unicorns$p_care) notation.

tapply(unicorns$height, list(unicorns$food, unicorns$p_care), mean)

care no_care

low 8.0375 3.66875

medium 9.1875 4.83750

high 9.6000 5.70625

106



3.6. Summarising data frames

And if you get a little fed up with having to write unicorns$ for every variable you can nest the tapply() function

inside the with() function. The with() function allows R to evaluate an R expression with respect to a named data

object (in this case unicorns).

with(unicorns, tapply(height, list(food, p_care), mean))

care no_care

low 8.0375 3.66875

medium 9.1875 4.83750

high 9.6000 5.70625

The with() function also works with many other functions and can save you alot of typing!

Another really useful function for summarising data is the aggregate() function. The aggregate() function

works in a very similar way to tapply() but is a bit more flexible.

For example, to calculate the mean of the variables height, weight, mane_size and fluffyness for each level

of food.

aggregate(unicorns[, 4:7], by = list(food = unicorns$food), FUN = mean)

food height weight mane_size fluffyness

low 5.853125 8.652812 11.14375 45.1000

medium 7.012500 11.164062 13.83125 67.5625

high 7.653125 16.646875 17.18125 126.6875

In the code above we have indexed the columns we want to summarise in the unicorns data frame using unicorns[,

4:7]. The by = argument specifies a list of factors (list(food = unicorns$food)) and the FUN = argument

names the function to apply (mean in this example).

Similar to the tapply() function we can include more than one factor to apply a function to. Here we calculate the

mean values for each combination of food and care

aggregate(unicorns[, 4:7], by = list(

food = unicorns$food,

p_care = unicorns$p_care

), FUN = mean)

107



Chapter 3. Data

food p_care height weight mane_size fluffyness

low care 8.03750 9.016250 9.96250 30.30625

medium care 9.18750 11.011250 13.48750 40.59375

high care 9.60000 16.689375 15.54375 98.05625

low no_care 3.66875 8.289375 12.32500 59.89375

medium no_care 4.83750 11.316875 14.17500 94.53125

high no_care 5.70625 16.604375 18.81875 155.31875

We can also use the aggregate() function in a different way by using the formula method (as we did with xtabs()).

On the left hand side of the formula (~) we specify the variable we want to apply the mean function on and to the

right hand side our factors separated by a + symbol. The formula method also allows you to use the data = argument

for convenience.

aggregate(height ~ food + p_care, FUN = mean, data = unicorns)

food p_care height

low care 8.03750

medium care 9.18750

high care 9.60000

low no_care 3.66875

medium no_care 4.83750

high no_care 5.70625

One advantage of using the formula method is that we can also use the subset = argument to apply the function to

subsets of the original data. For example, to calculate the mean height for each combination of the food and care

levels but only for those unicorns that have less than 7 horn_rings.

aggregate(height ~ food + p_care, FUN = mean, subset = horn_rings < 7, data = unicorns)

food p_care height

low care 8.176923

medium care 8.570000

108



3.7. Exporting data

food p_care height

high care 7.900000

low no_care 3.533333

medium no_care 5.316667

high no_care 3.850000

Or for only those unicorns in block 1.

aggregate(height ~ food + p_care, FUN = mean, subset = block == "1", data = unicorns)

food p_care height

low care 8.7500

medium care 9.5375

high care 10.0375

low no_care 3.3250

medium no_care 5.2375

high no_care 5.9250

3.7. Exporting data

By now we hope you’re getting a feel for how powerful and useful R is for manipulating and summarising data (and

we’ve only really scratched the surface). One of the great benefits of doing all your data wrangling in R is that you

have a permanent record of all the things you’ve done to your data. Gone are the days of making undocumented

changes in Excel or Calc! By treating your data as ‘read only’ and documenting all of your decisions in R you will

have made great strides towards making your analysis more reproducible and transparent to others. It’s important to

realise, however, that any changes you’ve made to your data frame in R will not change the original data file you

imported into R (and that’s a good thing). Happily it’s straightforward to export data frames to external files in a

wide variety of formats.

3.7.1. Export functions

The main workhorse function for exporting data frames is the write.table() function. As with the read.table()

function, the write.table() function is very flexible with lots of arguments to help customise it’s behaviour. As

109



Chapter 3. Data

an example, let’s take our original unicorns data frame, do some useful stuff to it and then export these changes to

an external file.

Similarly to read.table(), write.table() has a series of function with format specific default values such as

write.csv() and write.delim() which use “,” and tabs as delimiters, respectively,and include column names by

default.

Let’s order the rows in the data frame in ascending order of height within each level food. We will also apply a

square root transformation on the number of horn rings variable (horn_rings) and a log10 transformation on the

height variable and save these as additional columns in our data frame (hopefully this will be somewhat familiar to

you!).

unicorns_df2 <- unicorns[order(unicorns$food, unicorns$height), ]

unicorns_df2$horn_rings_sqrt <- sqrt(unicorns_df2$horn_rings)

unicorns_df2$log10_height <- log10(unicorns_df2$height)

str(unicorns_df2)

'data.frame': 96 obs. of 10 variables:

$ p_care : chr "no_care" "no_care" "no_care" "no_care" ...

$ food : Factor w/ 3 levels "low","medium",..: 1 1 1 1 1 1 1 1 1 1 ...

$ block : int 1 1 1 2 1 2 2 2 1 2 ...

$ height : num 1.8 2.2 2.3 2.4 3 3.1 3.2 3.3 3.7 3.7 ...

$ weight : num 6.01 9.97 7.28 9.1 9.93 8.74 7.45 8.92 7.03 8.1 ...

$ mane_size : num 17.6 9.6 13.8 14.5 12 16.1 14.1 11.6 7.9 10.5 ...

$ fluffyness : num 46.2 63.1 32.8 78.7 56.6 39.1 38.1 55.2 36.7 60.5 ...

$ horn_rings : int 4 2 6 8 6 3 4 6 5 6 ...

$ horn_rings_sqrt: num 2 1.41 2.45 2.83 2.45 ...

$ log10_height : num 0.255 0.342 0.362 0.38 0.477 ...

Now we can export our new data frame unicorns_df2 using the write.table() function. The first argument is

the data frame you want to export (unicorns_df2 in our example). We then give the filename (with file extension)

and the file path in either single or double quotes using the file = argument. In this example we’re exporting

the data frame to a file called unicorns_transformed.csv in the data directory. The row.names = FALSE

argument stops R from including the row names in the first column of the file.

110



3.7. Exporting data

write.csv(unicorns_df2,

file = "data/unicorns_transformed.csv",

row.names = FALSE

)

As we saved the file as a comma delimited text file we could open this file in any text editor.

We can of course export our files in a variety of other formats.

3.7.2. Other export functions

As with importing data files into R, there are also many alternative functions for exporting data to external files

beyond the write.table() function. If you followed the ‘Other import functions’ Section 3.3.4 of this Chapter you

will already have the required packages installed.

The fwrite() function from the data.table package is very efficient at exporting large data objects and is

much faster than the write.table() function. It’s also quite simple to use as it has most of the same arguments

as write.table(). To export a tab delimited text file we just need to specify the data frame name, the output file

name and file path and the separator between columns.

library(data.table)

fwrite(unicorns_df2, file = "data/unicorns_04_12.txt", sep = "\t")

To export a csv delimited file it’s even easier as we don’t even need to include the sep = argument.

library(data.table)

fwrite(unicorns_df2, file = "data/unicorns_04_12.csv")

The readr package also comes with two useful functions for quickly writing data to external files: the write_tsv()

function for writing tab delimited files and the write_csv() function for saving comma separated values (csv)

files.

library(readr)

write_tsv(unicorns_df2, path = "data/unicorns_04_12.txt")

write_csv(unicorns_df2, path = "data/unicorns_04_12.csv")

111



Chapter 4
Figures

Summarising your data, either numerically or graphically, is an important (if often overlooked) component of any

data analysis. Fortunately, R has excellent graphics capabilities and can be used whether you want to produce plots

for initial data exploration, model validation or highly complex publication quality figures. There are three main

systems for producing graphics in R; base R graphics, lattice graphics and ggplot2.

The base R graphics system is the original plotting system that’s been around (and has evolved) since the first days of

R. When creating plots with base R we tend to use high level functions (like the plot() function) to first create our

plot and then use one or more low level functions (like lines() and text() etc) to add additional information to

these plots. This can seem a little weird (and time consuming) when you first start creating fancy plots in R, but it

does allow you to customise almost every aspect of your plot and build complexity up in layers. The flip side to this

flexibility is that you’ll often need to make many decisions about how you want your plot to look rather than rely on

the software to make these decisions for you. Having said that, it’s generally very quick and easy to generate simple

exploratory plots with base R graphics.

The lattice system is implemented in the lattice package that comes pre-installed with the standard installation

of R. However, it won’t be loaded by default so you’ll first need to use library(lattice) to access all the plotting

functions. Unlike base R graphics, lattice plots are mostly generated all in one go using a single function so there’s no

need to use high and low level plotting functions to customise the look of a plot. This can be a real advantage as things

like margin sizes and plot spacing are adjusted automatically. Lattice plots also make a few more decisions for you

about how the plots will look but this comes with a slight cost as customising lattice plots to get them to look exactly

how you want can become quite involved. Where lattice plots really shine is plotting complex multi-dimensional

data using panel plots (also called trellis plots). We’ll see a couple of examples of these types of plots later in the

Chapter.

112



ggplot2 was based on a book called Grammar of Graphics by Wilkinson (2005). For an interesting summary of

Wilkinson’s book here. The Grammar of Graphics approach breaks figures down into their various components (e.g.

the underlying statistics, the geometric arrangement, the theme, see Figure 4.1). Users are thus able to manipulate

each of these components (i.e. layers) and produce a tailor-made figure fit for their specific needs.

Figure 4.1.: The Grammar of Graphics. Visual by Thomas de Beus

Each of these systems have their strengths and weaknesses and we often use them interchangeably. In this Chapter

we’ll introduce you to the both base R plotting function and theggplot2 package. It’s important to note that

ggplot2 is not required to make “fancy” and informative figures in R. If you prefer using base R graphics then

feel free to continue as almost all ggplot2 type figures can be created using base R (we often use either approach

depending on what we’re doing). The difference betweenggplot2 and base R is how you get to the end product

rather than any substantial differences in the end product itself. This is, never-the-less, a common belief probably due

to the fact that making a moderately attractive figure is (in our opinion at least), easier to do with ggplot2 as many

aesthetic decisions are made for the user, without you necessarily even knowing that a decision was ever made!

With that in mind, let’s get started making some figures.

113

https://www.jstatsoft.org/article/view/v017b03/v17b03.pdf


Chapter 4. Figures

4.1. Simple base R plots

There are many functions in R to produce plots ranging from the very basic to the highly complex. It’s impossible to

cover every aspect of producing graphics in R in this book so we’ll introduce you to most of the common methods of

graphing data and describe how to customise your graphs later on in Section 4.5.

The most common high level function used to produce plots in R is (rather unsurprisingly) the plot() function. For

example, let’s plot the weight of unicorns from our unicorns data frame which we imported in Section 3.3.2.

unicorns <- read.csv(file = "data/unicorns.csv")

plot(unicorns$weight)

0 20 40 60 80

10
15

20

Index

un
ic

or
ns

$w
ei

gh
t

R has plotted the values of weight (on the y axis) against an index since we are only plotting one variable to plot.

The index is just the order of the weight values in the data frame (1 first in the data frame and 97 last). The weight

variable name has been automatically included as a y axis label and the axes scales have been automatically set.

If we’d only included the variable weight rather than unicorns$weight, the plot() function will display an error

as the variable weight only exists in the unicorns data frame object.

plot(weight)

## Error in plot(weight) : object 'weight' not found

114



4.1. Simple base R plots

As many of the base R plotting functions don’t have a data = argument to specify the data frame name directly we

can use the with() function in combination with plot() as a shortcut.

with(unicorns, plot(weight))

To plot a scatterplot of one numeric variable against another numeric variable we just need to include both variables

as arguments when using the plot() function. For example to plot fluffyness on the y axis and weight of the x

axis.

plot(x = unicorns$weight, y = unicorns$fluffyness)

10 15 20

0
50

10
0

15
0

unicorns$weight

un
ic

or
ns

$f
lu

ffy
ne

ss

There is an equivalent approach for these types of plots which often causes some confusion at first. You can also

use the formula notation when using the plot() function. However, in contrast to the previous method the formula

method requires you to specify the y axis variable first, then a ~ and then our x axis variable.

plot(fluffyness ~ weight, data = unicorns)

115



Chapter 4. Figures

10 15 20

0
50

10
0

15
0

weight

flu
ffy

ne
ss

Figure 4.2.

Both of these two approaches are equivalent so we suggest that you just choose the one you prefer and go with it.

You can also specify the type of graph you wish to plot using the argument type =. You can plot just the points

(type = "p", this is the default), just lines (type = "l"), both points and lines connected (type = "b"), both

points and lines with the lines running through the points (type = "o") and empty points joined by lines (type =

"c"). For example, let’s use our skills from Section 2.4 to generate two vectors of numbers (my_x and my_y) and

then plot one against the other using different type = values to see what type of plots are produced. Don’t worry

about the par(mfrow = c(2, 2)) line of code yet. We’re just using this to split the plotting device so we can fit all

four plots on the same device to save some space. See Section 4.4 in the Chapter for more details about this. The top

left plot is type = "l", the top right type = "b", bottom left type = "o" and bottom right is type = "c".

my_x <- 1:10

my_y <- seq(from = 1, to = 20, by = 2)

par(mfrow = c(2, 2))

plot(my_x, my_y, type = "l")

plot(my_x, my_y, type = "b")

plot(my_x, my_y, type = "o")

plot(my_x, my_y, type = "c")

116



4.2. ggplot2

2 4 6 8 10
5

my_x

m
y_

y
2 4 6 8 10

5

my_x

m
y_

y

2 4 6 8 10

5

my_x

m
y_

y

2 4 6 8 10

5

my_x

m
y_

y

Admittedly the plots we’ve produced so far don’t look anything particularly special. However, the plot() function

is incredibly versatile and can generate a large range of plots which you can customise to your own taste. We’ll cover

how to customise ggplots in Section 4.5. As a quick aside, the plot() function is also what’s known as a generic

function which means it can change its default behaviour depending on the type of object used as an argument. You

will see an example of this in Section 9.6 where we use the plot() function to generate diagnostic plots of residuals

from a linear model object (bet you can’t wait!).

4.2. ggplot2

As mentioned earlier ggplot grammar requires several elements to produce a graphic (Figure 4.1) and a minimum

of 3 are required:

• a data frame

• a mapping system defining x and y

• a geometry layer

The data and mapping are provided within the called to the ggplot() function with the data and mapping arguments.

The geometry layer is added using specific functions.

In fact all layers are needed but default simple values of the other layers are automatically provided.

To redo the Figure 4.2, that contain only a scatterplot of point we can use the geom_point() function.

117



Chapter 4. Figures

ggplot(

data = unicorns,

mapping = aes(x = weight, y = fluffyness)

) +

geom_point()

0

50

100

150

5 10 15 20
weight

flu
ffy

ne
ss

Figure 4.3.

Now that we have basic understanding of ggplotwe can explore some graphics using both base R and ggplot code

4.3. Simple plots

4.3.1. Scatterplots

Simple type of plots really useful to have a look at the relation between 2 variables for example. Here are the code to

do it using base R (Figure 4.2)

plot(fluffyness ~ weight, data = unicorns)

or ggplot (Figure 4.3)

118



4.3. Simple plots

ggplot(

data = unicorns,

mapping = aes(x = weight, y = fluffyness)

) +

geom_point()

One big advantage of ggplot for simple scatterplot is the ease with which we can add a regression, smoother (loes

or gam) line to the plot using geom_smooth()function to add a statistic layer to the plot.

ggplot(

data = unicorns,

mapping = aes(x = weight, y = fluffyness)

) +

geom_point() +

geom_smooth()

0

50

100

150

5 10 15 20
weight

flu
ffy

ne
ss

4.3.2. Histograms

Frequency histograms are useful when you want to get an idea about the distribution of values in a numeric

variable. Using base R, the hist() function takes a numeric vector as its main argument. In ggplot, we need to use

geom_histogram(). Let’s generate a histogram of the height values.

119



Chapter 4. Figures

With base R

hist(unicorns$height)

Histogram of unicorns$height

unicorns$height

F
re

qu
en

cy

0 5 10 15

0
5

10
15

20

with ggplot2

ggplot(unicorns, aes(x = height)) +

geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

0

2

4

6

8

0 5 10 15
height

co
un

t

120



4.3. Simple plots

The hist() and geom_histogram() function automatically creates the breakpoints (or bins) in the histogram

unless you specify otherwise by using the breaks = argument. For example, let’s say we want to plot our histogram

with breakpoints every 1 cm unicorns height. We first generate a sequence from zero to the maximum value of

height (18 rounded up) in steps of 1 using the seq() function. We can then use this sequence with the breaks =

argument. While we’re at it, let’s also replace the ugly title for something a little better using the main = argument

brk <- seq(from = 0, to = 18, by = 1)

hist(unicorns$height, breaks = brk, main = "Unicorn height")

Unicorn height

unicorns$height

F
re

qu
en

cy

0 5 10 15

0
2

4
6

8
12

brk <- seq(from = 0, to = 18, by = 1)

ggplot(unicorns, aes(x = height)) +

geom_histogram(breaks = brk) +

ggtitle("Unicorn height")

121



Chapter 4. Figures

0.0

2.5

5.0

7.5

10.0

12.5

0 5 10 15
height

co
un

t

Unicorn height

You can also display the histogram as a proportion rather than a frequency by using the freq = FALSE argument to

hist() or indicating aes(y = after_stat(density)) in geom_histogram().

brk <- seq(from = 0, to = 18, by = 1)

hist(unicorns$height,

breaks = brk, main = "Unicorn height",

freq = FALSE

)

ggplot(unicorns, aes(x = height)) +

geom_histogram(aes(y = after_stat(density)), breaks = brk) +

ggtitle("Unicorn height")

An alternative to plotting just a straight up histogram is to add a kernel density curve to the plot. In base R, you first

need to compute the kernel density estimates using the density() and then add the estimates to plot as a line using

the lines() function.

dens <- density(unicorns$height)

hist(unicorns$height,

breaks = brk, main = "Unicorn height",

freq = FALSE

)

lines(dens)

122

https://en.wikipedia.org/wiki/Kernel_density_estimation


4.3. Simple plots

Unicorn height

unicorns$height

D
en

si
ty

0 5 10 15

0.
00

0.
04

0.
08

0.
12

With ggplot, you can simply add the geom_density() layer to the plot

ggplot(unicorns, aes(x = height)) +

geom_histogram(aes(y = after_stat(density)), breaks = brk) +

geom_density() +

ggtitle("Unicorn height")

0.00

0.04

0.08

0.12

0 5 10 15
height

de
ns

ity

Unicorn height

123



Chapter 4. Figures

4.3.3. Box plots

OK, we’ll just come and out and say it, we love boxplots and their close relation the violin plot. Boxplots (or

box-and-whisker plots to give them their full name) are very useful when you want to graphically summarise the

distribution of a variable, identify potential unusual values and compare distributions between different groups. The

reason we love them is their ease of interpretation, transparency and relatively high data-to-ink ratio (i.e. they convey

lots of information efficiently). We suggest that you try to use boxplots as much as possible when exploring your data

and avoid the temptation to use the more ubiquitous bar plot (even with standard error or 95% confidence intervals

bars). The problem with bar plots (aka dynamite plots) is that they hide important information from the reader such

as the distribution of the data and assume that the error bars (or confidence intervals) are symmetric around the mean.

Of course, it’s up to you what you do but if you’re tempted to use bar plots just search for ‘dynamite plots are evil’ or

see here or here for a fuller discussion.

To create a boxplot in R we use the boxplot() function. For example, let’s create a boxplot of the variable weight

from our unicorns data frame. We can also include a y axis label using the ylab = argument.

boxplot(unicorns$weight, ylab = "weight (g)")

10
15

20

w
ei

gh
t (

g)

ggplot(unicorns, aes(y = weight)) +

geom_boxplot() +

labs(y = "weight (g)")

124

http://users.stat.umn.edu/~rend0020/Teaching/STAT8801-2015Spring/handouts/24-dynamite.pdf
https://thenode.biologists.com/leaving-bar-five-steps/research/


4.3. Simple plots

5

10

15

20

−0.4 −0.2 0.0 0.2 0.4

w
ei

gh
t (

g)

The thick horizontal line in the middle of the box is the median value of weight (around 11 g). The upper line of

the box is the upper quartile (75th percentile) and the lower line is the lower quartile (25th percentile). The distance

between the upper and lower quartiles is known as the inter quartile range and represents the values of weight for

50% of the data. The dotted vertical lines are called the whiskers and their length is determined as 1.5 x the inter

quartile range. Data points that are plotted outside the the whiskers represent potential unusual observations. This

doesn’t mean they are unusual, just that they warrant a closer look. We recommend using boxplots in combination

with Cleveland dotplots to identify potential unusual observations (see the Section 4.3.5 for more details). The neat

thing about boxplots is that they not only provide a measure of central tendency (the median value) they also give

you an idea about the distribution of the data. If the median line is more or less in the middle of the box (between the

upper and lower quartiles) and the whiskers are more or less the same length then you can be reasonably sure the

distribution of your data is symmetrical.

If we want examine how the distribution of a variable changes between different levels of a factor we need to use the

formula notation with the boxplot() function. For example, let’s plot our weight variable again, but this time see

how this changes with each level of food. When we use the formula notation with boxplot() we can use the data

= argument to save some typing. We’ll also introduce an x axis label using the xlab = argument.

boxplot(weight ~ food,

data = unicorns,

ylab = "Weight (g)", xlab = "food level"

)

125



Chapter 4. Figures

high low medium

10
15

20

food level

W
ei

gh
t (

g)

ggplot(unicorns, aes(y = weight, x = food)) +

geom_boxplot() +

labs(y = "Weight (g)", x = "food Concentration")

5

10

15

20

high low medium
food Concentration

W
ei

gh
t (

g)

The factor levels are plotted in the same order defined by our factor variable food (often alphabetically). To change

the order we need to change the order of our levels of the food factor in our data frame using the factor() function

and then re-plot the graph. Let’s plot our boxplot with our factor levels going from low to high.

126



4.3. Simple plots

unicorns$food <- factor(unicorns$food,

levels = c("low", "medium", "high")

)

ggplot(unicorns, aes(y = weight, x = food)) +

geom_boxplot() +

labs(y = "Weight (g)", x = "food Concentration")

5

10

15

20

low medium high
food Concentration

W
ei

gh
t (

g)

We can also group our variables by two factors in the same plot. Let’s plot our weight variable but this time plot a

separate box for each food and parental care treatment (p_care) combination.

boxplot(weight ~ food * p_care,

data = unicorns,

ylab = "weight (g)", xlab = "food level"

)

127



Chapter 4. Figures

low.care high.care medium.no_care

10
15

20

food level

w
ei

gh
t (

g)

ggplot(unicorns, aes(y = weight, x = food)) +

geom_boxplot() +

labs(y = "Weight (g)", x = "food Concentration") +

facet_grid(.

~ p_care)

care no_care

low medium high low medium high
5

10

15

20

food Concentration

W
ei

gh
t (

g)

This plot looks much better in ggplot with the use of facet_grid allowing to make similar plots as a function of a

third (or even fourth) variable.

128



4.3. Simple plots

4.3.4. Violin plots

Violin plots are like a combination of a boxplot and a kernel density plot (you saw an example of a kernel density plot in

the histogram section above) all rolled into one figure. We can create a violin plot in R using the vioplot() function

from the vioplot package. You’ll need to first install this package using install.packages('vioplot')

function as usual. The nice thing about the vioplot() function is that you use it in pretty much the same way you

would use the boxplot() function. We’ll also use the argument col = "lightblue" to change the fill colour to

light blue.

library(vioplot)

vioplot(weight ~ food,

data = unicorns,

ylab = "weight (g)", xlab = "food Concentration",

col = "lightblue"

)

10
15

20

low medium high

food Concentration

w
ei

gh
t (

g)

In the violin plot above we have our familiar boxplot for each food level but this time the median value is represented

by a white circle. Plotted around each boxplot is the kernel density plot which represents the distribution of the data

for each food level.

129



Chapter 4. Figures

ggplot(unicorns, aes(y = weight, x = food)) +

geom_violin() +

geom_boxplot(width = 0.1) +

labs(y = "Weight (g)", x = "food Concentration")

5

10

15

20

low medium high
food Concentration

W
ei

gh
t (

g)

4.3.5. Dot charts

Identifying unusual observations (aka outliers) in numeric variables is extremely important as they may influence

parameter estimates in your statistical model or indicate an error in your data. A really useful (if undervalued) plot to

help identify outliers is the Cleveland dotplot. You can produce a dotplot in R very simply by using the dotchart()

function.

130



4.3. Simple plots

dotchart(unicorns$height)

5 10 15

In the dotplot above the data from the height variable is plotted along the x axis and the data is plotted in the order

it occurs in the unicorns data frame on the y axis (values near the top of the y axis occur later in the data frame

with those lower down occurring at the beginning of the data frame). In this plot we have a single value extending to

the right at about 17 cm but it doesn’t appear particularly large compared to the rest. An example of a dotplot with an

unusual observation is given below.

0 10 20 30 40 50

131



Chapter 4. Figures

We can also group the values in our height variable by a factor variable such as food using the groups = argument.

This is useful for identifying unusual observations within a factor level that might be obscured when looking at all

the data together.

dotchart(unicorns$height, groups = unicorns$food)

low

medium

high

5 10 15

ggdotchart(data = unicorns, x = "height", y = "food")

low

medium

high

8
6.

4
7.

6
9.

7
12

.3 9.
1

8.
9

7.
4

3.
1

7.
9

8.
8

8.
5

5.
6

11
.5 5.
8

3.
9

2.
3

5.
2

2.
2

4.
5

1.
8 3

3.
7

2.
4

5.
7

3.
2

3.
3

5.
5

4.
4

7.
5

10
.7

11
.2

10
.4 9.
8

6.
9

9.
4 11 7.
1 6 9

5.
3

4.
1

3.
5

4.
9

2.
5

5.
4

12
.6 10

14
.1

10
.1 6.
5

7.
7

9.
2

6.
2

6.
3

17
.2 1.
2

2.
6

10
.9 7.
2

2.
1

4.
7 5

9.
3

4.
6

height

fo
od

132



4.3. Simple plots

4.3.6. Pairs plots

Previously in this Chapter we used the plot() function to create a scatterplot to explore the relationship between

two numeric variables. With datasets that contain many numeric variables, it’s often handy to create multiple

scatterplots to visualise relationships between all these variables. We could use the plot() function to create each

of these plot individually, but a much easier way is to use the pairs() function. The pairs() function creates a

multi-panel scatterplot (sometimes called a scatterplot matrix) which plots all combinations of variables. Let’s create

a multi-panel scatterplot of all of the numeric variables in our unicorns data frame. Note, you may need to click on

the ‘Zoom’ button in RStudio to display the plot clearly.

pairs(unicorns[, c(

"height", "weight", "mane_size",

"fluffyness", "horn_rings"

)])

height

10
0

15
0

5 10 15

10 20

weight

mane_size

10 30 50

0 50 150

fluffyness

5
15

10
40

5 10 15

5
15

horn_rings

# or we could use the equivalent

# pairs(unicorns[, 4:8])

Interpretation of the pairs plot takes a bit of getting used to. The panels on the diagonal give the variable names. The

first row of plots displays the height variable on the y axis and the variables weight, mane_size, fluffyness

and horn_rings on the x axis for each of the four plots respectively. The next row of plots have weight on the y

axis and height, mane_size, fluffyness and horn_rings on the x axis. We interpret the rest of the rows in the

133



Chapter 4. Figures

same way with the last row displaying the unicorns variable on the y axis and the other variables on the x axis.

Hopefully you’ll notice that the plots below the diagonal are the same plots as those above the diagonal just with the

axis reversed.

To do pairs plot with ggplot, you nee the ggpairs()function from GGally package. The output is quite similar

but you have only the lower part of the matrix of plots, you get a density plot on the diagonal and the correlations on

the upper part of the plot.

ggpairs(unicorns[, c(

"height", "weight", "mane_size",

"fluffyness", "horn_rings"

)])

Corr:

0.281**

Corr:

0.005

Corr:

0.445***

Corr:

−0.139

Corr:

0.658***

Corr:

0.441***

Corr:

0.232*

Corr:

0.562***

Corr:

0.321**

Corr:
0.553***

height weight mane_size fluffyness horn_rings

height
w

eight
m

ane_size
fluffyness

horn_rings

5 10 15 5 10 15 20 10 20 30 40 500 50 100150 5 10 15

0.000
0.025
0.050
0.075
0.100

5
10
15
20

10
20
30
40
50

0
50

100
150

5
10
15

The pairs() function can be tweak to do similar things and more but is more involved. Have a look at the great

help file for the pairs() function (?pairs)which provide all the details to do something like the plot below.

134



4.3. Simple plots

height

10

0.28

0
15

0

0.14

5 10 15

0.23

10 20

weight

0.45

0.66

0.56

mane_size

0.44

10 30 50

0.32

0 50 150

fluffyness

0.55

5
15

10
40

5 10 15

5
15horn_rings

4.3.7. Coplots

When examining the relationship between two numeric variables, it is often useful to be able to determine whether a

third variable is obscuring or changing any relationship. A really handy plot to use in these situations is a conditioning

plot (also known as conditional scatterplot plot) which we can create in R by using the coplot() function. The

coplot() function plots two variables but each plot is conditioned (|) by a third variable. This third variable can

be either numeric or a factor. As an example, let’s look at how the relationship between the number of horn rings

(horn_rings variable) and the weight of unicorns changes dependent on mane_size. Note the coplot() function

has a data = argument so no need to use the $ notation.

coplot(horn_rings ~ weight | mane_size, data = unicorns)

135



Chapter 4. Figures

5
15

10 15 20

10 15 20 10 15 20

5
15

weight

ho
rn

_r
in

gs

10 20 30 40

Given : mane_size

gg_coplot(unicorns,

x = weight, y = horn_rings,

faceting = mane_size

)

`geom_smooth()` using formula = 'y ~ x'

5

10

15

5

10

15ho
rn

_r
in

gs

mane_size = [5.75, 11.35] mane_size = [9.55, 12.65] mane_size = [11.45, 13.95]

mane_size = [12.55, 16.15] mane_size = [13.95, 17.55] mane_size = [16.15, 49.25]

10 20 30 40 50
mane_size

5 10 15 20 5 10 15 20 5 10 15 20
weight

136



4.3. Simple plots

It takes a little practice to interpret coplots. The number of horn rings is plotted on the y axis and the weight of

unicorns on the x axis. The six plots show the relationship between these two variables for different ranges of mane

size. The bar plot at the top indicates the range of mane size values for each of the plots. The panels are read from

bottom left to top right along each row. For example, the bottom left panel shows the relationship between number of

horn rings and weight for unicorns with the lowest range of mane size (approximately 5 - 11 cm). The top right plot

shows the relationship between horn ring and weight for unicorns with a mane size ranging from approximately 16 -

50 cm. Notice that the range of values for mane size differs between panels and that the ranges overlap from panel

to panel. The coplot() function does it’s best to split the data up to ensure there are an adequate number of data

points in each panel. If you don’t want to produce plots with overlapping data in the panel you can set the overlap

= argument to overlap = 0

You can also use the coplot() function with factor conditioning variables. With gg_coplot() you need to first

set the factor as numeric before plotting and specify overlap=0. For example, we can examine the relationship

between horn_rings and weight variables conditioned on the factor food. The bottom left plot is the relationship

between horn_rings and weight for those unicorns in the low food treatment. The top left plot shows the same

relationship but for unicorns in the high food treatment.

coplot(horn_rings ~ weight | food, data = unicorns)

5
15

10 15 20

10 15 20

5
15

weight

ho
rn

_r
in

gs

low
medium

high

Given : food

unicorns <- mutate(unicorns, food_num = as.numeric(food))

gg_coplot(unicorns,

x = weight, y = horn_rings,

137



Chapter 4. Figures

faceting = food_num, overlap = 0

)

`geom_smooth()` using formula = 'y ~ x'

5

10

15

ho
rn

_r
in

gs

food_num = [1,1.33] food_num = (1.67,2] food_num = (2.67,3]

1.0 1.5 2.0 2.5 3.0
food_num

5 10 15 20 5 10 15 20 5 10 15 20
weight

4.3.8. Summary of plot function

Graph type ggplot2 Base R function

scatterplot geom_point() plot()

frequency histogram geom_histogram() hist()

boxplot geom_boxplot() boxplot()

Cleveland dotplot ggdotchart() dotchart()

scatterplot matrix ggpairs() pairs()

conditioning plot gg_coplot() coplot()

Hopefully, you’re getting the idea that we can create really informative exploratory plots quite easily using either

base R or ggplot graphics. Which one you use is entirely up to you (that’s the beauty of using R, you get to choose)

and we happily mix and match to suit our needs. In the next section we cover how to customise your base R plots to

get them to look exactly how you want.

138



4.4. Multiple graphs

4.4. Multiple graphs

4.4.1. Base R

In base R, one of the most common methods to plot multiple graphs is to use the main graphical function par() to

split the plotting device up into a number of defined sections using the mfrow = argument. With this method, you

first need to specify the number of rows and columns of plots you would like and then run the code for each plot. For

example, to plot two graphs side by side we would use par(mfrow = c(1, 2)) to split the device into 1 row and

two columns.

par(mfrow = c(1, 2))

plot(unicorns$weight, unicorns$fluffyness,

xlab = "weight",

ylab = "Fluffyness"

)

boxplot(fluffyness ~ food, data = unicorns, cex.axis = 0.6)

10 15 20

0
50

10
0

15
0

weight

F
lu

ffy
ne

ss

low medium high

0
50

10
0

15
0

food

flu
ffy

ne
ss

Once you’ve finished making your plots don’t forget to reset your plotting device back to normal with par(mfrow =

c(1,1)).

139



Chapter 4. Figures

4.4.2. ggplot

Using ggplot in addition to the facet_grid() and facet_wrap functions allowing to easily repeat and organise multiple

plots as a function of specific variables, there are multiple way of organising multiple ggplot together. The approach

we recommend is using the patchwork package.

First you will need to install (if you don’t have it yet) and make the patchwork package available.

install.packages("patchwork")

library(patchwork)

An important note: For those who have used base R to produce their figures and are familiar with using par(mfrow

= c(2,2)) (which allows plotting of four figures in two rows and two columns) be aware that this does not work for

ggplot2 objects. Instead you will need to use either the patchwork package or alternative packages such as

gridArrange or cowplot or covert the ggplot2 objects to grobs.

To plot both of the plots together we need to assign each figure to a separate object and then use these objects when

we use patchwork.

So we can generate 2 figures and assign them to objects. As you can see, the figures do not appear in the plot window.

They will appear only when you call the object.

first_figure <- ggplot(

aes(x = height, y = fluffyness, color = food),

data = unicorns

) +

geom_point() +

geom_smooth(method = "lm", se = FALSE) +

facet_grid(block ~ p_care)

second_figure <- ggplot(

aes(x = weight, y = fluffyness, color = food),

data = unicorns

) +

geom_point() +

geom_smooth(method = "lm", se = FALSE) +

facet_grid(block ~ p_care)

140



4.4. Multiple graphs

We have two immediate and simple options with patchwork; arrange figures on top of each other (specified with a

/) or arrange figures side-by-side (specified with either a + or a |). Let’s try to plot both figures, one on top of the

other.

first_figure / second_figure

care no_care

1
2

5 10 15 5 10 15

0
50

100
150

0
50

100
150

height

flu
ffy

ne
ss

food

low

medium

high

care no_care

1
2

5 10 15 20 5 10 15 20

0
50

100
150

0
50

100
150

weight

flu
ffy

ne
ss

food

low

medium

high

Play around: Try to create a side-by-side version of the above figure (hint: try the other operators).

We can take this one step further and assign nested patchwork figures to an object and use this in turn to create

labels for individuals figures.

nested_compare <- first_figure / second_figure

nested_compare +

plot_annotation(tag_levels = "A", tag_suffix = ")")

141



Chapter 4. Figures

care no_care

1
2

5 10 15 5 10 15

0
50

100
150

0
50

100
150

height

flu
ffy

ne
ss

food

low

medium

high

A)

care no_care
1

2

5 10 15 20 5 10 15 20

0
50

100
150

0
50

100
150

weight

flu
ffy

ne
ss

food

low

medium

high

B)

4.5. Customising ggplots

Went for a walk to be edited

4.6. Exporting plots

Creating plots in R is all well and good but what if you want to use these plots in your thesis, report or publication?

One option is to click on the ‘Export’ button in the ‘Plots’ tab in RStudio. You can also export your plots from R to

an external file by writing some code in your R script. The advantage of this approach is that you have a little more

control over the output format and it also allows you to generate (or update) plots automatically whenever you run

your script. You can export your plots in many different formats but the most common are, pdf, png, jpeg and tiff.

By default, R (and therefore RStudio) will direct any plot you create to the plot window. To save your plot to an

external file you first need to redirect your plot to a different graphics device. You do this by using one of the many

graphics device functions to start a new graphic device. For example, to save a plot in pdf format we will use the

pdf() function. The first argument in the pdf() function is the filepath and filename of the file we want to save

(don’t forget to include the .pdf extension). Once we’ve used the pdf() function we can then write all of the code we

used to create our plot including any graphical parameters such as setting the margins and splitting up the plotting

device. Once the code has run we need to close the pdf plotting device using the dev.off() function.

142



4.6. Exporting plots

pdf(file = "output/my_plot.pdf")

par(mar = c(4.1, 4.4, 4.1, 1.9), xaxs = "i", yaxs = "i")

plot(unicorns$weight, unicorns$fluffyness,

xlab = "weight (g)",

ylab = expression(paste("shoot area (cm"^"2", ")")),

xlim = c(0, 30), ylim = c(0, 200), bty = "l",

las = 1, cex.axis = 0.8, tcl = -0.2,

pch = 16, col = "dodgerblue1", cex = 0.9

)

text(x = 28, y = 190, label = "A", cex = 2)

dev.off()

If we want to save this plot in png format we simply use the png() function in more or less the same way we used

the pdf() function.

png("output/my_plot.png")

par(mar = c(4.1, 4.4, 4.1, 1.9), xaxs = "i", yaxs = "i")

plot(unicorns$weight, unicorns$fluffyness,

xlab = "weight (g)",

ylab = expression(paste("shoot area (cm"^"2", ")")),

xlim = c(0, 30), ylim = c(0, 200), bty = "l",

las = 1, cex.axis = 0.8, tcl = -0.2,

pch = 16, col = "dodgerblue1", cex = 0.9

)

text(x = 28, y = 190, label = "A", cex = 2)

dev.off()

Other useful functions are; jpeg(), tiff() and bmp(). Additional arguments to these functions allow you to

change the size, resolution and background colour of your saved images. See ?png for more details.

ggplot2 provide a really useful function ggsave() function which simplify saving plots a lot but works only

for ggplots.

After producing a plot and seeing it in your IDE, you can simply run ggsave() with the adequate argument to save the

last ggplot produced. You can of course, also, specify which plot to save.

143



Chapter 4. Figures

ggsave("file.png")

144



Chapter 5
Programming

After learning the basics, programming in R is the next big step. There are already a vast number of R packages

available, surely more than enough to cover everything you could possibly want to do? Why then, would you ever

need to create you own R functions? Why not just stick to the functions from a package? Well, in some cases you’ll

want to customise those existing functions to suit your specific needs. Or you may want to implement a new approach

which means there won’t be any pre-existing packages that work for you. Both of these are not particularly common.

Functions are mainly used to do one thing well in a simple manner without having to type of the code necessary to

do that function each time. We can see functions as a short-cut to copy-pasting. If you have to do a similar task 4

times or more, build a function for it, and simply call that function 4 times or call it in a loop .

5.1. Looking behind the curtain

A good way to start learning to program in R is to see what others have done. We can start by briefly peeking behind

the curtain. With many functions in R, if you want to have a quick glance at the machinery behind the scenes, we can

simply write the function name but without the ().

Note that to view the source code of base R packages (those that come with R) requires some additional steps which

we won’t cover here (see this link if you’re interested), but for most other packages that you install yourself, generally

entering the function name without () will show the source code of the function.

What can have a look at the function to fit a linear model lm()

lm

145

https://stackoverflow.com/questions/19226816/how-can-i-view-the-source-code-for-a-function


Chapter 5. Programming

function (formula, data, subset, weights, na.action, method = "qr",

model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,

contrasts = NULL, offset, ...)

{

ret.x <- x

ret.y <- y

cl <- match.call()

mf <- match.call(expand.dots = FALSE)

m <- match(c("formula", "data", "subset", "weights", "na.action",

"offset"), names(mf), 0L)

mf <- mf[c(1L, m)]

mf$drop.unused.levels <- TRUE

mf[[1L]] <- quote(stats::model.frame)

mf <- eval(mf, parent.frame())

if (method == "model.frame")

return(mf)

else if (method != "qr")

warning(gettextf("method = '%s' is not supported. Using 'qr'",

method), domain = NA)

mt <- attr(mf, "terms")

y <- model.response(mf, "numeric")

w <- as.vector(model.weights(mf))

if (!is.null(w) && !is.numeric(w))

stop("'weights' must be a numeric vector")

offset <- model.offset(mf)

mlm <- is.matrix(y)

ny <- if (mlm)

nrow(y)

else length(y)

if (!is.null(offset)) {

if (!mlm)

offset <- as.vector(offset)

if (NROW(offset) != ny)

146



5.1. Looking behind the curtain

stop(gettextf("number of offsets is %d, should equal %d (number of observations)",

NROW(offset), ny), domain = NA)

}

if (is.empty.model(mt)) {

x <- NULL

z <- list(coefficients = if (mlm) matrix(NA_real_, 0,

ncol(y)) else numeric(), residuals = y, fitted.values = 0 *

y, weights = w, rank = 0L, df.residual = if (!is.null(w)) sum(w !=

0) else ny)

if (!is.null(offset)) {

z$fitted.values <- offset

z$residuals <- y - offset

}

}

else {

x <- model.matrix(mt, mf, contrasts)

z <- if (is.null(w))

lm.fit(x, y, offset = offset, singular.ok = singular.ok,

...)

else lm.wfit(x, y, w, offset = offset, singular.ok = singular.ok,

...)

}

class(z) <- c(if (mlm) "mlm", "lm")

z$na.action <- attr(mf, "na.action")

z$offset <- offset

z$contrasts <- attr(x, "contrasts")

z$xlevels <- .getXlevels(mt, mf)

z$call <- cl

z$terms <- mt

if (model)

z$model <- mf

if (ret.x)

z$x <- x

147



Chapter 5. Programming

if (ret.y)

z$y <- y

if (!qr)

z$qr <- NULL

z

}

<bytecode: 0x643ece1f28b8>

<environment: namespace:stats>

What we see above is the underlying code for this particular function. We could copy and paste this into our own

script and make any changes we deemed necessary, although tread carefully and test the changes you’ve made.

Don’t worry overly if most of the code contained in functions doesn’t make sense immediately. This will be especially

true if you are new to R, in which case it seems incredibly intimidating. Honestly, it can be intimidating even after

years of R experience. To help with that, we’ll begin by making our own functions in R in the next section.

5.2. Functions in R

Functions are the bread and butter of R, the essential sustaining elements allowing you to work with R. They’re made

(most of the time) with the utmost care and attention but may end up being something of a Frankenstein’s monster

- with weirdly attached limbs. But no matter how convoluted they may be they will always faithfully do the same

thing.

This means that functions can also be very stupid.

If we asked you to go to the supermarket to get us some ingredients to make Balmoral chicken, even if you don’t

know what the heck that is, you’d be able to guess and bring at least something back. Or you could decide to make

something else. Or you could ask a chef for help. Or you could pull out your phone and search online for what

Balmoral chicken is. The point is, even if we didn’t give you enough information to do the task, you’re intelligent

enough to, at the very least, try to find a work around.

If instead, we asked a function to do the same, it would listen intently to our request, and then will simply return an

error. It would then repeat this every single time we asked it to do the job when the task is not clear. The point here,

is that code and functions cannot find workarounds to poorly provided information, which is great. It’s totally reliant

on you, to tell it very explicitly what it needs to do step by step.

148

https://thescottishbutcher.com/recipes/chicken-balmoral-and-peppercorn-sauce/


5.2. Functions in R

Remember two things: the intelligence of code comes from the coder, not the computer and functions need exact

instructions to work.

To prevent functions from being too stupid you must provide the information the function needs in order for it to

work. As with the Balmoral chicken example, if we’d supplied a recipe list to the function, it would have managed

just fine. We call this “fulfilling an argument”. The vast majority of functions require the user to fulfill at least one

argument.

This can be illustrated in the pseudocode below. When we make a function we can:

• specify what arguments the user must fulfill (e.g. arg1 and arg2)

• provide default values to arguments (e.g. arg2 = TRUE)

• define what to do with the arguments (expression):

my_function <- function(arg1, arg2, ...) {

expression

}

The first thing to note is that we’ve used the function function() to create a new function called my_function. To

walk through the above code; we’re creating a function called my_function. Within the round brackets we specify

what information (i.e. arguments) the function requires to run (as many or as few as needed). These arguments are

then passed to the expression part of the function. The expression can be any valid R command or set of R commands

and is usually contained between a pair of braces { }. Once you run the above code, you can then use your new

function by typing:

my_function(arg1, arg2)

Let’s work through an example to help clear things up.

First we are going to create a data frame called dishes, where columns lasagna, stovies, poutine, and

tartiflette are filled with 10 random values drawn from a bag (using the rnorm() function to draw random

values from a Normal distribution with mean 0 and standard deviation of 1). We also include a “problem”, for us to

solve later, by including 3 NA values within the poutine column (using rep(NA, 3)).

dishes <- data.frame(

lasagna = rnorm(10),

stovies = rnorm(10),

149



Chapter 5. Programming

poutine = c(rep(NA, 3), rnorm(7)),

tartiflette = rnorm(10)

)

Let’s say that you want to multiply the values in the variables stovies and lasagna and create a new object called

stovies_lasagna. We can do this “by hand” using:

stovies_lasagna <- dishes$stovies * dishes$lasagna

If this was all we needed to do, we can stop here. R works with vectors, so doing these kinds of operations in R is

actually much simpler than other programming languages, where this type of code might require loops (we say that

R is a vectorised language). Something to keep in mind for later is that doing these kinds of operations with loops

can be much slower compared to vectorisation.

But what if we want to repeat this multiplication many times? Let’s say we wanted to multiply columns lasagna

and stovies, stovies and tartiflette, and poutine and tartiflette. In this case we could copy and paste

the code, replacing the relevant information.

lasagna_stovies <- dishes$lasagna * dishes$stovies

stovies_tartiflette <- dishes$stovies * dishes$stovies

poutine_tartiflette <- dishes$poutine * dishes$tartiflette

While this approach works, it’s easy to make mistakes. In fact, here we’ve “forgotten” to change stovies to

tartiflette in the second line of code when copying and pasting. This is where writing a function comes in handy.

If we were to write this as a function, there is only one source of potential error (within the function itself) instead of

many copy-pasted lines of code (which we also cut down on by using a function).

LIGHTBULB Tip

As a rule of thumb if we have to do the same thing (by copy/paste & modify) 3 times or more, we just make a

function for it.

In this case, we’re using some fairly trivial code where it’s maybe hard to make a genuine mistake. But what if we

increased the complexity?

150



5.2. Functions in R

dishes$lasagna * dishes$stovies / dishes$lasagna + (dishes$lasagna * 10^(dishes$stovies))

-dishes$stovies - (dishes$lasagna * sqrt(dishes$stovies + 10))

Now imagine having to copy and paste this three times, and in each case having to change the lasagna and stovies

variables (especially if we had to do it more than three times).

What we could do instead is generalize our code for x and y columns instead of naming specific dishes. If we did

this, we could recycle the x * y code. Whenever we wanted to multiple columns together, we assign a dishes to

either x or y. We’ll assign the multiplication to the objects lasagna_stovies and stovies_poutine so we can

come back to them later.

# Assign x and y values

x <- dishes$lasagna

y <- dishes$stovies

# Use multiplication code

lasagna_stovies <- x * y

# Assign new x and y values

x <- dishes$stovies

y <- dishes$poutine

# Reuse multiplication code

stovies_poutine <- x * y

This is essentially what a function does. Let’s call our new function multiply_cols() and define it with two

arguments, x and y. A function in R will simply return its last value. However, it is possible to force the function to

return an earlier value if wanted/needed. Using the return() function is not strictly necessary in this example as R

will automatically return the value of the last line of code in our function. We include it here to make this explicit.

multiply_cols <- function(x, y) {

return(x * y)

}

Now that we’ve defined our function we can use it. Let’s use the function to multiple the columns lasagna and

stovies and assign the result to a new object called lasagna_stovies_func

151



Chapter 5. Programming

lasagna_stovies_func <- multiply_cols(x = dishes$lasagna, y = dishes$stovies)

lasagna_stovies_func

[1] -0.67383476 0.09729587 -2.24091464 -0.20096247 0.02001534 0.11474034

[7] 0.71020002 0.04563115 2.00041809 -1.90902035

If we’re only interested in multiplying dishes$lasagna and dishes$stovies, it would be overkill to create a

function to do something once. However, the benefit of creating a function is that we now have that function added

to our environment which we can use as often as we like. We also have the code to create the function, meaning we

can use it in completely new projects, reducing the amount of code that has to be written (and retested) from scratch

each time.

To satisfy ourselves that the function has worked properly, we can compare the lasagna_stovies variable with

our new variable lasagna_stovies_func using the identical() function. The identical() function tests

whether two objects are exactly identical and returns either a TRUE or FALSE value. Use ?identical if you want to

know more about this function.

identical(lasagna_stovies, lasagna_stovies_func)

[1] TRUE

And we confirm that the function has produced the same result as when we do the calculation manually. We

recommend getting into a habit of checking that the function you’ve created works the way you think it has.

Now let’s use our multiply_cols() function to multiply columns stovies and poutine. Notice now that

argument x is given the value dishes$stoviesand y the value dishes$poutine.

stovies_poutine_func <- multiply_cols(x = dishes$stovies, y = dishes$poutine)

stovies_poutine_func

[1] NA NA NA 0.005400149 -0.410644593

[6] -0.744696576 0.308796054 0.093830731 1.215142429 1.696310555

So far so good. All we’ve really done is wrapped the code x * y into a function, where we ask the user to specify

what their x and y variables are.

152



5.2. Functions in R

Using the function is a bit long since we have to retype the name of the data frame for each variable. For a bit of fun

we can modify the function so that, we can specify the data frame as an argument and the column names without

quoting them (as in a tidyverse style).

1 multiply_cols <- function(data, x, y) {

2 temp_var <- data %>%

3 select({{ x }}, {{ y }}) %>%

4 mutate(xy = prod(.)) %>%

5 pull(xy)

6 }

For this new version of the function, we added we added a data argument on line 1. On lines 3, we select the x and

y variables provided as arguments. On line 4., we create the product of the 2 selected columns and on line 5. we

extract the column we juste created. We also remove the return() function since it was not needed

Our function is now compatible with the pipe (either native |> or magrittr %>%) function. However, since the function

now uses the pipe from magrittr and dplyr functions, we need to load the tidyverse package for it to

work.

library(tidyverse)

lasagna_stovies_func <- multiply_cols(dishes, lasagna, stovies)

lasagna_stovies_func <- dishes |> multiply_cols(lasagna, stovies)

Now let’s add a little bit more complexity. If you look at the output of poutine_tartiflette some of the

calculations have produced NA values. This is because of those NA values we included in poutine when we created

the dishes data frame. Despite these NA values, the function appeared to have worked but it gave us no indication

that there might be a problem. In such cases we may prefer if it had warned us that something was wrong. How can

we get the function to let us know when NA values are produced? Here’s one way.

1 multiply_cols <- function(data, x, y) {

2 temp_var <- data %>%

3 select({{ x }}, {{ y }}) %>%

4 mutate(xy = {

5 .[1] * .[2]

6 }) %>%

153



Chapter 5. Programming

7 pull(xy)

8 if (any(is.na(temp_var))) {

9 warning("The function has produced NAs")

10 return(temp_var)

11 } else {

12 return(temp_var)

13 }

14 }

stovies_poutine_func <- multiply_cols(dishes, stovies, poutine)

Warning in multiply_cols(dishes, stovies, poutine): The function has produced

NAs

lasagna_stovies_func <- multiply_cols(dishes, lasagna, stovies)

The core of our function is still the same, but we’ve now got an extra six lines of code (lines 6-11). We’ve included

some conditional statements, if (lines 6-8) and else (lines 9-11), to test whether any NAs have been produced and if

they have we display a warning message to the user. The next section of this Chapter will explain how these work

and how to use them.

5.3. Conditional statements

x * y does not apply any logic. It merely takes the value of x and multiplies it by the value of y. Conditional

statements are how you inject some logic into your code. The most commonly used conditional statement is if.

Whenever you see an if statement, read it as ‘If X is TRUE, do a thing’. Including an else statement simply extends

the logic to ‘If X is TRUE, do a thing, or else do something different’.

Both the if and else statements allow you to run sections of code, depending on a condition is either TRUE or

FALSE. The pseudo-code below shows you the general form.

if (condition) {

Code executed when condition is TRUE

} else {

154



5.3. Conditional statements

Code executed when condition is FALSE

}

To delve into this a bit more, we can use an old programmer joke to set up a problem.

A programmer’s partner says: ‘Please go to the store and buy a carton of milk and if they have eggs, get

six.’

The programmer returned with 6 cartons of milk.

When the partner sees this, and exclaims ‘Why the heck did you buy six cartons of milk?’

The programmer replied ‘They had eggs’

At the risk of explaining a joke, the conditional statement here is whether or not the store had eggs. If coded as per

the original request, the programmer should bring 6 cartons of milk if the store had eggs (condition = TRUE), or else

bring 1 carton of milk if there weren’t any eggs (condition = FALSE). In R this is coded as:

eggs <- TRUE # Whether there were eggs in the store

if (eggs == TRUE) { # If there are eggs

n.milk <- 6 # Get 6 cartons of milk

} else { # If there are not eggs

n.milk <- 1 # Get 1 carton of milk

}

We can then check n.milk to see how many milk cartons they returned with.

n.milk

[1] 6

And just like the joke, our R code has missed that the condition was to determine whether or not to buy eggs, not

more milk (this is actually a loose example of the Winograd Scheme, designed to test the intelligence of artificial

intelligence by whether it can reason what the intended referent of a sentence is).

We could code the exact same egg-milk joke conditional statement using an ifelse() function.

155

https://en.wikipedia.org/wiki/Winograd_Schema_Challenge


Chapter 5. Programming

eggs <- TRUE

n.milk <- ifelse(eggs == TRUE, yes = 6, no = 1)

This ifelse() function is doing exactly the same as the more fleshed out version from earlier, but is now condensed

down into a single line of code. It has the added benefit of working on vectors as opposed to single values (more

on this later when we introduce loops). The logic is read in the same way; “If there are eggs, assign a value of 6 to

n.milk, if there isn’t any eggs, assign the value 1 to n.milk”.

We can check again to make sure the logic is still returning 6 cartons of milk:

n.milk

[1] 6

Currently we’d have to copy and paste code if we wanted to change if eggs were in the store or not. We learned

above how to avoid lots of copy and pasting by creating a function. Just as with the simple x * y expression in our

previous multiply_cols() function, the logical statements above are straightforward to code and well suited to be

turned into a function. How about we do just that and wrap this logical statement up in a function?

milk <- function(eggs) {

if (eggs == TRUE) {

6

} else {

1

}

}

We’ve now created a function called milk() where the only argument is eggs. The user of the function specifies if

eggs is either TRUE or FALSE, and the function will then use a conditional statement to determine how many cartons

of milk are returned.

Let’s quickly try:

milk(eggs = TRUE)

[1] 6

156



5.3. Conditional statements

And the joke is maintained. Notice in this case we have actually specified that we are fulfilling the eggs argument

(eggs = TRUE). In some functions, as with ours here, when a function only has a single argument we can be lazy

and not name which argument we are fulfilling. In reality, it’s generally viewed as better practice to explicitly state

which arguments you are fulfilling to avoid potential mistakes.

OK, lets go back to the multiply_cols() function we created above and explain how we’ve used conditional

statements to warn the user if NA values are produced when we multiple any two columns together.

multiply_cols <- function(data, x, y) {

temp_var <- data %>%

select({{ x }}, {{ y }}) %>%

mutate(xy = {

.[1] * .[2]

}) %>%

pull(xy)

if (any(is.na(temp_var))) {

warning("The function has produced NAs")

return(temp_var)

} else {

return(temp_var)

}

}

In this new version of the function we still use x * y as before but this time we’ve assigned the values from this

calculation to a temporary vector called temp_var so we can use it in our conditional statements. Note, this temp_var

variable is local to our function and will not exist outside of the function due something called R’s scoping rules. We

then use an if statement to determine whether our temp_var variable contains any NA values. The way this works is

that we first use the is.na() function to test whether each value in our temp_var variable is an NA. The is.na()

function returns TRUE if the value is an NA and FALSE if the value isn’t an NA. We then nest the is.na(temp_var)

function inside the function any() to test whether any of the values returned by is.na(temp_var) are TRUE. If

at least one value is TRUE the any() function will return a TRUE. So, if there are any NA values in our temp_var

variable the condition for the if() function will be TRUE whereas if there are no NA values present then the condition

will be FALSE. If the condition is TRUE the warning() function generates a warning message for the user and then

returns the temp_var variable. If the condition is FALSE the code below the else statement is executed which just

returns the temp_var variable.

157

https://www.r-bloggers.com/dont-run-afoul-of-scoping-rules-in-r/


Chapter 5. Programming

So if we run our modified multiple_columns() function on the columns dishes$stovies and dishes$poutine

(which contains NAs) we will receive an warning message.

stovies_poutine_func <- multiply_cols(dishes, stovies, poutine)

Warning in multiply_cols(dishes, stovies, poutine): The function has produced

NAs

Whereas if we multiple two columns that don’t contain NA values we don’t receive a warning message

lasagna_stovies_func <- multiply_cols(dishes, lasagna, stovies)

5.4. Combining logical operators

The functions that we’ve created so far have been perfectly suited for what we need, though they have been fairly

simplistic. Let’s try creating a function that has a little more complexity to it. We’ll make a function to determine if

today is going to be a good day or not based on two criteria. The first criteria will depend on the day of the week

(Friday or not) and the second will be whether or not your code is working (TRUE or FALSE). To accomplish this,

we’ll be using if and else statements. The complexity will come from if statements immediately following the

relevant else statement. We’ll use such conditional statements four times to achieve all combinations of it being a

Friday or not, and if your code is working or not.

We also used the cat() function to output text formatted correctly.

good.day <- function(code.working, day) {

if (code.working == TRUE && day == "Friday") {

cat(

"BEST.

DAY.

EVER.

Stop while you are ahead and go to the pub!"

)

} else if (code.working == FALSE && day == "Friday") {

cat("Oh well, but at least it's Friday! Pub time!")

158



5.4. Combining logical operators

} else if (code.working == TRUE && day != "Friday") {

cat("

So close to a good day...

shame it's not a Friday"

)

} else if (code.working == FALSE && day != "Friday") {

cat("Hello darkness.")

}

}

good.day(code.working = TRUE, day = "Friday")

BEST.

DAY.

EVER.

Stop while you are ahead and go to the pub!

good.day(FALSE, "Tuesday")

Hello darkness.

Notice that we never specified what to do if the day was not a Friday? That’s because, for this function, the only

thing that matters is whether or not it’s Friday.

We’ve also been using logical operators whenever we’ve used if statements. Logical operators are the final piece of

the logical conditions jigsaw. Below is a table which summarises operators. The first two are logical operators and

the final six are relational operators. You can use any of these when you make your own functions (or loops).

Operator Technical Description What it means Example

&& Logical AND Both conditions must be met if(cond1 == test && cond2 ==

test)

|| Logical OR Either condition must be met if(cond1 == test || cond2 ==

test)

< Less than X is less than Y if(X < Y)

159



Chapter 5. Programming

Operator Technical Description What it means Example

> Greater than X is greater than Y if(X > Y)

<= Less than or equal to X is less/equal to Y if(X <= Y)

>= Greater than or equal to X is greater/equal to Y if(X >= Y)

== Equal to X is equal to Y if(X == Y)

!= Not equal to X is not equal to Y if(X != Y)

5.5. Loops

R is very good at performing repetitive tasks. If we want a set of operations to be repeated several times we use

what’s known as a loop. When you create a loop, R will execute the instructions in the loop a specified number of

times or until a specified condition is met. There are three main types of loop in R: the for loop, the while loop and

the repeat loop.

Loops are one of the staples of all programming languages, not just R, and can be a powerful tool (although in our

opinion, used far too frequently when writing R code).

5.5.1. For loop

The most commonly used loop structure when you want to repeat a task a defined number of times is the for loop.

The most basic example of a for loop is:

for (i in 1:5) {

print(i)

}

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

160



5.5. Loops

But what’s the code actually doing? This is a dynamic bit of code were an index i is iteratively replaced by each value

in the vector 1:5. Let’s break it down. Because the first value in our sequence (1:5) is 1, the loop starts by replacing

i with 1 and runs everything between the { }. Loops conventionally use i as the counter, short for iteration, but you

are free to use whatever you like, even your pet’s name, it really does not matter (except when using nested loops, in

which case the counters must be called different things, like SenorWhiskers and HerrFlufferkins).

So, if we were to do the first iteration of the loop manually

i <- 1

print(i)

[1] 1

Once this first iteration is complete, the for loop loops back to the beginning and replaces i with the next value in

our 1:5 sequence (2 in this case):

i <- 2

print(i)

[1] 2

This process is then repeated until the loop reaches the final value in the sequence (5 in this example) after which

point it stops.

To reinforce how for loops work and introduce you to a valuable feature of loops, we’ll alter our counter within the

loop. This can be used, for example, if we’re using a loop to iterate through a vector but want to select the next row

(or any other value). To show this we’ll simply add 1 to the value of our index every time we iterate our loop.

for (i in 1:5) {

print(i + 1)

}

[1] 2

[1] 3

[1] 4

[1] 5

[1] 6

161



Chapter 5. Programming

As in the previous loop, the first value in our sequence is 1. The loop begins by replacing i with 1, but this time

we’ve specified that a value of 1 must be added to i in the expression resulting in a value of 1 + 1.

i <- 1

i + 1

[1] 2

As before, once the iteration is complete, the loop moves onto the next value in the sequence and replaces i with the

next value (2 in this case) so that i + 1 becomes 2 + 1.

i <- 2

i + 1

[1] 3

And so on. We think you get the idea! In essence this is all a for loop is doing and nothing more.

Whilst above we have been using simple addition in the body of the loop, you can also combine loops with functions.

Let’s go back to our data frame dishes. Previously in the Chapter we created a function to multiply two columns

and used it to create our lasagna_stovies, stovies_poutine, and poutine_tartiflette objects. We could

have used a loop for this. Let’s remind ourselves what our data look like and the code for the multiple_columns()

function.

dishes <- data.frame(

lasagna = rnorm(10),

stovies = rnorm(10),

poutine = c(rep(NA, 3), rnorm(7)),

tartiflette = rnorm(10)

)

multiply_cols <- function(data, x, y) {

temp_var <- data %>%

select({{ x }}, {{ y }}) %>%

mutate(xy = {

162



5.5. Loops

.[1] * .[2]

}) %>%

pull(xy)

if (any(is.na(temp_var))) {

warning("The function has produced NAs")

return(temp_var)

} else {

return(temp_var)

}

}

To use a list to iterate over these columns we need to first create an empty list (remember Section 3.2.3?) which we

call temp (short for temporary) which will be used to store the output of the for loop.

temp <- list()

for (i in 1:(ncol(dishes) - 1)) {

temp[[i]] <- multiply_cols(dishes, x = colnames(dishes)[i], y = colnames(dishes)[i + 1])

}

Warning in multiply_cols(dishes, x = colnames(dishes)[i], y =

colnames(dishes)[i + : The function has produced NAs

Warning in multiply_cols(dishes, x = colnames(dishes)[i], y =

colnames(dishes)[i + : The function has produced NAs

When we specify our for loop notice how we subtracted 1 from ncol(dishes). The ncol() function returns the

number of columns in our dishes data frame which is 4 and so our loop runs from i = 1 to i = 4 - 1 which is i

= 3.

So in the first iteration of the loop i takes on the value 1. The multiply_cols() function multiplies the dishes[,

1] (lasagna) and dishes[, 1 + 1] (stovies) columns and stores it in the temp[[1]] which is the first element

of the temp list.

The second iteration of the loop i takes on the value 2. The multiply_cols() function multiplies the dishes[,

2] (stovies) and dishes[, 2 + 1] (poutine) columns and stores it in the temp[[2]] which is the second

element of the temp list.

163



Chapter 5. Programming

The third and final iteration of the loop i takes on the value 3. The multiply_cols() function multiplies the

dishes[, 3] (poutine) and dishes[, 3 + 1] (tartiflette) columns and stores it in the temp[[3]] which

is the third element of the temp list.

Again, it’s a good idea to test that we are getting something sensible from our loop (remember, check, check and

check again!). To do this we can use the identical() function to compare the variables we created by hand with

each iteration of the loop manually.

lasagna_stovies_func <- multiply_cols(dishes, lasagna, stovies)

i <- 1

identical(

multiply_cols(dishes, colnames(dishes)[i], colnames(dishes)[i + 1]),

lasagna_stovies_func

)

[1] TRUE

stovies_poutine_func <- multiply_cols(dishes, stovies, poutine)

Warning in multiply_cols(dishes, stovies, poutine): The function has produced

NAs

i <- 2

identical(

multiply_cols(dishes, colnames(dishes)[i], colnames(dishes)[i + 1]),

stovies_poutine_func

)

Warning in multiply_cols(dishes, colnames(dishes)[i], colnames(dishes)[i + :

The function has produced NAs

[1] TRUE

If you can follow the examples above, you’ll be in a good spot to begin writing some of your own for loops. That

said there are other types of loops available to you.

164



5.5. Loops

5.5.2. While loop

Another type of loop that you may use (albeit less frequently) is the while loop. The while loop is used when you

want to keep looping until a specific logical condition is satisfied (contrast this with the for loop which will always

iterate through an entire sequence).

The basic structure of the while loop is:

while (logical_condition) {

expression

}

A simple example of a while loop is:

i <- 0

while (i <= 4) {

i <- i + 1

print(i)

}

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

Here the loop will only continue to pass values to the main body of the loop (the expression body) when i is less

than or equal to 4 (specified using the <= operator in this example). Once i is greater than 4 the loop will stop.

There is another, very rarely used type of loop; the repeat loop. The repeat loop has no conditional check so can

keep iterating indefinitely (meaning a break, or “stop here”, has to be coded into it). It’s worthwhile being aware of

it’s existence, but for now we don’t think you need to worry about it; the for and while loops will see you through

the vast majority of your looping needs.

165



Chapter 5. Programming

5.5.3. When to use a loop?

Loops are fairly commonly used, though sometimes a little overused in our opinion. Equivalent tasks can be performed

with functions, which are often more efficient than loops. Though this raises the question when should you use a

loop?

In general loops are implemented inefficiently in R and should be avoided when better alternatives exist, especially

when you’re working with large datasets. However, loop are sometimes the only way to achieve the result we want.

Some examples of when using loops can be appropriate:

• Some simulations (e.g. the Ricker model can, in part, be built using loops)

• Recursive relationships (a relationship which depends on the value of the previous relationship [“to understand

recursion, you must understand recursion”])

• More complex problems (e.g., how long since the last badger was seen at site 𝑗, given a pine marten was seen

at time 𝑡, at the same location 𝑗 as the badger, where the pine marten was detected in a specific 6 hour period,

but exclude badgers seen 30 minutes before the pine marten arrival, repeated for all pine marten detections)

• While loops (keep jumping until you’ve reached the moon)

5.5.4. If not loops, then what?

In short, use the apply family of functions; apply(), lapply(), tapply(), sapply(), vapply(), and mapply().

The apply functions can often do the tasks of most “home-brewed” loops, sometimes faster (though that won’t really

be an issue for most people) but more importantly with a much lower risk of error. A strategy to have in the back of

your mind which may be useful is; for every loop you make, try to remake it using an apply function (often lapply

or sapply will work). If you can, use the apply version. There’s nothing worse than realizing there was a small, tiny,

seemingly meaningless mistake in a loop which weeks, months or years down the line has propagated into a huge

mess. We strongly recommend trying to use the apply functions whenever possible.

lapply

Your go to apply function will often be lapply() at least in the beginning. The way that lapply() works, and the

reason it is often a good alternative to for loops, is that it will go through each element in a list and perform a task (i.e.

run a function). It has the added benefit that it will output the results as a list - something you’d have to otherwise

code yourself into a loop.

166



5.5. Loops

An lapply() has the following structure:

lapply(X, FUN)

Here X is the vector which we want to do something to. FUN stands for how much fun this is (just kidding!). It’s also

short for “function”.

Let’s start with a simple demonstration first. Let’s use the lapply() function create a sequence from 1 to 5 and add

1 to each observation (just like we did when we used a for loop):

lapply(0:4, function(a) {

a + 1

})

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] 3

[[4]]

[1] 4

[[5]]

[1] 5

Notice that we need to specify our sequence as 0:4 to get the output 1 ,2 ,3 ,4 , 5 as we are adding 1 to each

element of the sequence. See what happens if you use 1:5 instead.

Equivalently, we could have defined the function first and then used the function in lapply()

167



Chapter 5. Programming

add_fun <- function(a) {

a + 1

}

lapply(0:4, add_fun)

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] 3

[[4]]

[1] 4

[[5]]

[1] 5

The sapply() function does the same thing as lapply() but instead of storing the results as a list, it stores them as

a vector.

sapply(0:4, function(a) {

a + 1

})

[1] 1 2 3 4 5

As you can see, in both cases, we get exactly the same results as when we used the for loop.

168



Chapter 6
Reproducible reports with Quarto

Exclamation-Triangle Warning

screenshot are still with R markdown will be update soon

This chapter will introduce you to creating reproducible reports using R markdown / Quarto to encourage best (or

better) practice to facilitate open science. It will first describe what R markdown and Quarto are and why you might

want to consider using it, describe how to create a Quarto document using RStudio and then how to convert this

document to a html or pdf formatted report. During this Chapter you will learn:

• the different components of a Quarto document

• how to format text, graphics and tables within the document

• how to avoid some of the common difficulties using Quarto.

6.1. What is R markdown / Quarto?

6.1.1. R Markdown

R markdown is a simple and easy to use plain text language used to combine your R code, results from your data

analysis (including plots and tables) and written commentary into a single nicely formatted and reproducible document

(like a report, publication, thesis chapter or a web page like this one).

Technically, R markdown is a combination of three languages, R, Markdown and YAML (yet another markup

language). Both Markdown and YAML are a type of ‘markup’ language. A markup language simply provides a

way of creating an easy to read plain text file which can incorporate formatted text, images, headers and links to

169



Chapter 6. Reproducible reports with Quarto

other documents. If you’re interested you can find more information about markup languages here. Actually, you are

exposed to a markup language on a daily basis, as most of the internet content you digest every day is underpinned

by a markup language called HTML (Hypertext Markup Language). Anyway, the main point is that R markdown

is very easy to learn (much, much easier than HTML) and when used with a good IDE (RStudio or VS Code) it’s

ridiculously easy to integrate into your workflow to produce feature rich content (so why wouldn’t you?!).

6.1.2. Quarto?

Quarto is a multi-language, next generation version of R Markdown from Posit, with many new features and

capabilities and is compatible not only with R but also with other language like Python and Julia. Like R Markdown,

Quarto uses knitr package to execute R code, and is therefore able to render most existing .Rmd files without

modification. However, it also comes with a plethora of new functionalities. More importantly, it makes it much

easier to create different type of output since the coding is homogenize for specific format without having to rely

on different r packages each with there own specificity (e.g bookdown, hugodown, blogdown, thesisdown, rticles,

xaringan, …).

In the rest of this chapter, we will talk about Quarto but a lot can be done with R markdown. Quarto uses .qmd files

while R markdown works with .Rmd but Quarto can render .Rmd files too.

6.2. Why use Quarto?

During the previous Chapters we talked a lot about conducting your research in a robust and reproducible manner to

facilitate open science. In a nutshell, open science is about doing all we can to make our data, methods, results and

inferences transparent and available to everyone. Some of the main tenets of open science are described here and

include:

• Transparency in experimental methodology, observation, collection of data and analytical methods.

• Public availability and re-usability of scientific data

• Public accessibility and transparency of scientific communication

• Using web-based tools to facilitate scientific collaboration

By now all of you will (hopefully) be using R to explore and analyse your interesting data. As such, you’re already

well along the road to making your analysis more reproducible, transparent and shareable. However, perhaps your

current workflow looks something like this:

170

https://en.wikipedia.org/wiki/Markup_language
http://openscience.org/what-exactly-is-open-science/


6.2. Why use Quarto?

Figure 6.1.: Non-reproducible workflow

Your data is imported from your favourite spreadsheet software into R, you write your R code to explore and analyse

your data, you save plots as external files, copy tables of analysis output and then manually combine all of this and

your written prose into a single MS Word document (maybe for a paper or thesis chapter). Whilst there is nothing

particularly wrong with this approach (and it’s certainly better than using point and click software to analyse your

data) there are some limitations:

• It’s not particularly reproducible. Because this workflow separates your R code from the final document there

are multiple opportunities for undocumented decisions to be made (which plots did you use? what analysis

did/didn’t you include? etc).

• It’s inefficient. If you need to go back and change something (create a new plot or update your analysis etc) you

will need to create or amend multiple documents increasing the risk of mistakes creeping into your workflow.

• It’s difficult to maintain. If your analysis changes you again need to update multiple files and documents.

• It can be difficult to decide what to share with others. Do you share all of your code (initial data exploration,

model validation etc) or just the code specific to your final document? It’s quite a common (and bad!) practice

for researchers to maintain two R scripts, one used for the actual analysis and one to share with the final paper

or thesis chapter. This can be both time consuming and confusing and should be avoided.

Perhaps a more efficient and robust workflow would look something like this:

171



Chapter 6. Reproducible reports with Quarto

Figure 6.2.: A-reproducible (and more fficient) workflow

Your data is imported into R as before but this time all of the R code you used to analyse your data, produce your

plots and your written text (Introduction, Materials and Methods, Discussion etc) is contained within a single Quarto

document which is then used (along with your data) to automatically create your final document. This is exactly

what Quarto allows you to do.

Some of the advantages of using Quarto include:

• Explicitly links your data with your R code and output creating a fully reproducible workflow. ALL of the R

code used to explore, summarise and analyse your data can be included in a single easy to read document.

You can decide what to include in your final document (as you will learn below) but all of your R code can be

included in the Quarto document.

• You can create a wide variety of output formats (pdf, html web pages, MS Word and many others) from a

single Quarto document which enhances both collaboration and communication.

• Enhances transparency of your research. Your data and Quarto file can be included with your publication or

thesis chapter as supplementary material or hosted on a GitHub repository (see Chapter 7).

• Increases the efficiency of your workflow. If you need to modify or extend your current analysis you just need

to update your Quarto document and these changes will automatically be included in your final document.

172



6.3. Get started with Quarto

6.3. Get started with Quarto

Quarto integrates really well with R Studio and VS Code, and provide both a source editor as well as a visual

editor providing an experience close to your classic WYSIWYG (what you see is what you write) writing software

(e.g. Microsoft Word or LibreOffice writer)

6.3.1. Installation

To use Quarto you will first need to install the Quarto software and the quarto package (with its dependencies).

You can find instructions on how to do this in Section 1.1.1 and on the Quarto website. If you would like to create

pdf documents (or MS Word documents) from your Quarto file you will also need to install a version of LATEX on

your computer. If you’ve not installed LATEX before, we recommend that you install TinyTeX. Again, instructions on

how to do this can be found at Section 1.1.1.

6.3.2. Create a Quarto document, .qmd

Right, time to create your first Quarto document. Within RStudio, click on the menu File -> New File ->

Quarto.... In the pop up window, give the document a ‘Title’ and enter the ‘Author’ information (your name) and

select HTML as the default output. We can change all of this later so don’t worry about it for the moment.

Figure 6.3.: Creating a Quarto document

173

https://quarto.org/docs/tools/rstudio.html
https://quarto.org/docs/tools/vscode.html
https://quarto.org/docs/get-started/
https://yihui.name/tinytex/


Chapter 6. Reproducible reports with Quarto

You will notice that when your new Quarto document is created it includes some example Quarto code. Normally

you would just highlight and delete everything in the document except the information at the top between the ---

delimiters (this is called the YAML header which we will discuss in a bit) and then start writing your own code.

However, just for now we will use this document to practice converting Quarto to both html and pdf formats and

check everything is working.

Figure 6.4.: A new Quarto document

Once you’ve created your Quarto document it’s good practice to save this file somewhere convenient (Section 1.4

and Figure 1.11). You can do this by selecting File -> Save from RStudio menu (or use the keyboard shortcut ctrl +

s on Windows or cmd + s on a Mac) and enter an appropriate file name (maybe call it my_first_quarto). Notice

the file extension of your new Quarto file is .qmd.

Now, to convert your .qmd file to a HTML document click on the little black triangle next to the Knit icon at the top

of the source window and select knit to HTML

RStudio will now ‘knit’ (or render) your .qmd file into a HTML file. Notice that there is a new Quarto tab in your

console window which provides you with information on the rendering process and will also display any errors if

something goes wrong.

If everything went smoothly a new HTML file will have been created and saved in the same directory as your .qmd

file (ours will be called my_first_quarto.html). To view this document simply double click on the file to open

in a browser (like Chrome or Firefox) to display the rendered content. RStudio will also display a preview of the

174



6.3. Get started with Quarto

Figure 6.5.: Knitting a Qmd file

rendered file in a new window for you to check out (your window might look slightly different if you’re using a

Windows computer).

Great, you’ve just rendered your first Quarto document. If you want to knit your .qmd file to a pdf document then

all you need to do is choose knit to PDF instead of knit to HTML when you click on the knit icon. This will

create a file called my_first_quarto.pdf which you can double click to open. Give it a go!

You can also knit an .qmd file using the command line in the console rather than by clicking on the knit icon. To do

this, just use the quarto_render() function from the quarto package as shown below. Again, you can change

the output format using the output_format = argument as well as many other options.

library(quarto)

quarto_render('my_first_quarto.qmd', output_format = 'html_document')

# alternatively if you don't want to load the quarto package

quarto::quarto_render('my_first_quarto.Rmd', output_format = 'html_document')

175



Chapter 6. Reproducible reports with Quarto

Figure 6.6.: A my first rendered html

176



6.4. Quarto document (.qmd) anatomy

6.4. Quarto document (.qmd) anatomy

OK, now that you can render a Quarto file in RStudio into both HTML and pdf formats let’s take a closer look at

the different components of a typical Quarto document. Normally each Quarto document is composed of 3 main

components:

1. a YAML header

2. formatted text

3. code chunks.

Figure 6.7.: Structure of a qmd file

6.4.1. YAML header

YAML stands for ‘YAML Ain’t Markup Language’ (it’s an ‘in’ joke!) and this optional component contains the

metadata and options for the entire document such as the author name, date, output format, etc. The YAML header is

surrounded before and after by a --- on its own line. In RStudio a minimal YAML header is automatically created

for you when you create a new Quarto document as we did above (Section 6.3.2) but you can change this any time. A

simple YAML header may look something like this:

---

title: My first Quarto document

author: Jane Doe

177

https://en.wikipedia.org/wiki/Recursive_acronym


Chapter 6. Reproducible reports with Quarto

date: March 01, 2020

format: html

---

In the YAML header above the output format is set to HTML. If you would like to change the output to pdf format

then you can change it from format: html to format: pdf (you can also set more than one output format if you

like). You can also change the default font and font size for the whole document and even include fancy options

such as a table of contents and inline references and a bibliography. If you want to explore the plethora of other

options see here. Just a note of caution, many of the options you can specify in the YAML header will work with

both HTML and pdf formatted documents, but not all. If you need multiple output formats for your Quarto document

check whether your YAML options are compatible between these formats. Also, indentation in the YAML header

has a meaning, so be careful when aligning text. For example, if you want to include a table of contents you would

modify the output: field in the YAML header as follows

---

title: My first Quarto document

author: Bob Hette

date: March 01, 2020

format:

html:

toc: true

---

6.4.2. Formatted text

As mentioned above, one of the great things about Quarto is that you don’t need to rely on your word processor to

bring your R code, analysis and writing together. Quarto is able to render (almost) all of the text formatting that you

are likely to need such as italics, bold, strike-through, super and subscript as well as bulleted and numbered lists,

headers and footers, images, links to other documents or web pages and also equations. However, in contrast to your

familiar What-You-See-Is-What-You-Get (WYSIWYG) word processing software you don’t see the final formatted

text in your Quarto document (as you would in MS Word), rather you need to ‘markup’ the formatting in your text

ready to be rendered in your output document. At first, this might seem like a right pain in the proverbial but it’s

actually very easy to do and also has many advantages (do you find yourself spending more time on making your text

look pretty in MS Word rather than writing good content?!).

178

https://quarto.org/docs/guide/
https://en.wikipedia.org/wiki/WYSIWYG
https://dev.to/practicalprogramming/advantages-of-document-markup-languages-vs-wysiwyg-editors-9f6


6.4. Quarto document (.qmd) anatomy

Here is an example of marking up text formatting in an Quarto document

#### Tadpole sediment experiment

These data were obtained from a mesocosm experiment which aimed to examine the

effect of bullfrog tadpoles (*Lithobates catesbeianus*) biomass on sediment

nutrient (NH~4~, NO~3~ and PO~3~) release.

At the start of the experiment 15 replicate mesocosms were filled with

20 cm^2^ of **homogenised** marine sediment and assigned to one of five

tadpole biomass treatments.

which would look like this in the final rendered document (can you spot the markups?)

Tadpole sediment experiment

These data were obtained from a mesocosm experiment which aimed to examine the effect of bullfrog

tadpoles (Lithobates catesbeianus) biomass on sediment nutrient (NH4, NO3 and PO3) release. At

the start of the experiment 15 replicate mesocosms were filled with 20 cm2 of homogenised marine

sediment and assigned to one of five tadpole biomass treatments.

Emphasis

Some of the most common markdown syntax for providing emphasis and formatting text is given below.

Goal Quarto output

bold text **mytext** mytext

italic text *mytext* mytext

strikethrough ~~mytext~~ mytext

superscript mytext^2^ mytext2

subscript mytext~2~ mytext2

Interestingly there is no underline in R markdown syntax by default, for more or less esoteric reasons (e.g. an

underline is considered a stylistic element (there may well be other reasons)). Quarto fixed that problem, you can

simply do [text to underline]{.underline} to underline your text.

179

https://softwareengineering.stackexchange.com/questions/207727/why-there-is-no-markdown-for-underline


Chapter 6. Reproducible reports with Quarto

White space and line breaks

One of the things that can be confusing for new users of markdown is the use of spaces and carriage returns (the

enter key on your keyboard). In markdown, multiple spaces within the text are generally ignored as are carriage

returns. For example this markdown text

These data were obtained from a

mesocosm experiment which aimed to examine the

effect

of bullfrog tadpoles (*Lithobates catesbeianus*) biomass.

will be rendered as

These data were obtained from a mesocosm experiment which aimed to examine the effect of bullfrog

tadpoles (Lithobates catesbeianus) biomass.

This is generally a good thing (no more random multiple spaces in your text). If you want your text to start on a new

line then you can simply add two blank spaces at the end of the preceding line

These data were obtained from a

mesocosm experiment which aimed to examine the

effect bullfrog tadpoles (Lithobates catesbeianus) biomass.

If you really want multiple spaces within your text then you can use the Non breaking space tag &nbsp;

These &nbsp; &nbsp; &nbsp; data were &nbsp; &nbsp; &nbsp; &nbsp; obtained from a

mesocosm experiment which &nbsp; &nbsp; aimed to examine the

effect &nbsp; &nbsp; &nbsp; &nbsp; bullfrog tadpoles (*Lithobates catesbeianus*) biomass.

These data were obtained from a

mesocosm experiment which aimed to examine the

effect bullfrog tadpoles (Lithobates catesbeianus) biomass.

Headings

You can add headings and subheadings to your Quarto document by using the # symbol at the beginning of the line.

You can decrease the size of the headings by simply adding more # symbols. For example

180



6.4. Quarto document (.qmd) anatomy

# Header 1

## Header 2

### Header 3

#### Header 4

##### Header 5

###### Header 6

results in headings in decreasing size order

181



Header 1

Header 2

Header 3

Header 4

Header 5

Comments

As you can see above the meaning of the # symbol is different when formatting text in an Quarto document compared

to a standard R script (which is used to included a comment - remember?!). You can, however, use a # symbol

to comment code inside a code chunk (Section 6.4.1) as usual (more about this in a bit). If you want to include a

comment in your Quarto document outside a code chunk which won’t be included in the final rendered document

then enclose your comment between <!-- and -->.

<!--

this is an example of how to format a comment using Quarto.

-->

182



Header 2

Lists

If you want to create a bullet point list of text you can format an unordered list with sub items. Notice that the

sub-items need to be indented.

- item 1

- item 2

+ sub-item 2

+ sub-item 3

- item 3

- item 4

• item 1

• item 2

– sub-item 2

– sub-item 3

• item 3

• item 4

If you need an ordered list

1. item 1

1. item 2

+ sub-item 2

+ sub-item 3

1. item 3

1. item 4

183



Header 1

1. item 1

2. item 2

• sub-item 2

• sub-item 3

3. item 3

4. item 4

Links

In addition to images you can also include links to webpages or other links in your document. Use the following

syntax to create a clickable link to an existing webpage. The link text goes between the square brackets and the URL

for the webpage between the round brackets immediately after.

You can include a text for your clickable [link](https://www.worldwildlife.org)

which gives you:

You can include a text for your clickable link

6.4.1. Code chunks

Now to the heart of the matter. To include R code into your Quarto document you simply place your code into a

‘code chunk’. All code chunks start and end with three backticks ```. Note, these are also known as ‘grave accents’

or ‘back quotes’ and are not the same as an apostrophe! On most keyboards you can find the backtick on the same

key as tilde (~).

184

https://www.worldwildlife.org
https://superuser.com/questions/254076/how-do-i-type-the-tick-and-backtick-characters-on-windows


Header 2

```{r}

Any valid R code goes here

```

You can insert a code chunk by either typing the chunk delimiters ```{r} and ``` manually or use your IDE option

(RStudio toolbar (the Insert button) or by clicking on the menu Code -> Insert Chunk. In VS Code you can

use code snippets) Perhaps an even better way is to get familiar with the keyboard shortcuts for you IDE or code

snippets.

There are a many things you can do with code chunks: you can produce text output from your analysis, create tables

and figures and insert images amongst other things. Within the code chunk you can place rules and arguments

between the curly brackets {} that give you control over how your code is interpreted and output is rendered. These

are known as chunk options. The only mandatory chunk option is the first argument which specifies which language

you’re using (r in our case but other languages are supported). Note, chunk options can be written in two ways:

1. either all of your chunk options must be written between the curly brackets on one line with no line breaks

2. or they can be written using a YAML notation within the code chunk using #| notation at the beginning of the

line.

We are using the YAML notation for code chunk options since we find it much easier to read when you have multiple

options of long captions.

You can also specify an optional code chunk name (or label) which can be useful when trying to debug problems and

when performing advanced document rendering. In the following block, we name the code chunk summary-stats,

load the package ggplot2 , create a dataframe (dataf) with two variables x and y, use the summary() function

to display some summary statistics and plot a scatterplot of the data with ggplot(). When we run the code chunk

both the R code and the resulting output are displayed in the final document.

```{r, summary-stats, echo = TRUE, fig.cap = "Caption for a simple figure but making the chunk options long and hard to read"}

library(ggplot)

x <- 1:10 # create an x variable

y <- 10:1 # create a y variable

dataf <- data.frame(x = x, y = y)

185

https://rmarkdown.rstudio.com/authoring_knitr_engines.html%23sql


Header 1

summary(dataf)

ggplot(dataf, aes(x = x, y = y)) + geom_point()

```

```{r}

#| label: summary-stats

#| echo: true

#| fig-cap = "Caption for a simple figure but making the chunk options long and hard to read"

x <- 1:10 # create an x variable

y <- 10:1 # create a y variable

dataf <- data.frame(x = x, y = y)

summary(dataf)

ggplot(dataf, aes(x = x, y = y)) + geom_point()

```

Both will output

x <- 1:10 # create an x variable

y <- 10:1 # create a y variable

dataf <- data.frame(x = x, y = y)

summary(dataf)

x y

Min. : 1.00 Min. : 1.00

1st Qu.: 3.25 1st Qu.: 3.25

Median : 5.50 Median : 5.50

Mean : 5.50 Mean : 5.50

186



Header 2

3rd Qu.: 7.75 3rd Qu.: 7.75

Max. :10.00 Max. :10.00

ggplot(dataf, aes(x = x, y = y)) + geom_point()

2.5

5.0

7.5

10.0

2.5 5.0 7.5 10.0
x

y

Figure 6.8.: Caption for a simple figure but making the chunk options long and hard to read

When using chunk names make sure that you don’t have duplicate chunk names in your Quarto document and avoid

spaces and full stops as this will cause problems when you come to knit your document (We use a - to separate

words in our chunk names).

If we wanted to only display the output of our R code (just the summary statistics for example) and not the code itself

in our final document we can use the chunk option echo=FALSE

```{r}

#| label: summary-stats2

#| echo: false

x <- 1:10 # create an x variable

y <- 10:1 # create a y variable

dataf <- data.frame(x = x, y = y)

187



Header 1

summary(dataf)

```

x y

Min. : 1.00 Min. : 1.00

1st Qu.: 3.25 1st Qu.: 3.25

Median : 5.50 Median : 5.50

Mean : 5.50 Mean : 5.50

3rd Qu.: 7.75 3rd Qu.: 7.75

Max. :10.00 Max. :10.00

To display the R code but not the output use the results='hide' chunk option.

```{r}

#| label: summary-stats

#| results: 'hide'

x <- 1:10 # create an x variable

y <- 10:1 # create a y variable

dataf <- data.frame(x = x, y = y)

summary(dataf)

```

x <- 1:10 # create an x variable

y <- 10:1 # create a y variable

dataf <- data.frame(x = x, y = y)

summary(dataf)

Sometimes you may want to execute a code chunk without showing any output at all. You can suppress the entire

output using the chunk option include: false.

188



Header 2

```{r}

#| label: summary-stats4

#| include: false

x <- 1:10 # create an x variable

y <- 10:1 # create a y variable

dataf <- data.frame(x = x, y = y)

summary(dataf)

```

There are a large number of chunk options documented here with a more condensed version here. Perhaps the most

commonly used are summarised below with the default values shown.

Chunk option default value Function

echo echo: true If false, will not display the code

in the final document

results results: 'markup' If ‘hide’, will not display the code’s

results in the final document.

If ‘hold’, will delay displaying all output pieces until the end of the chunk. If ‘asis’, will pass through results without

reformatting them. | | include | include: true | If false, will run the chunk but not include the chunk in the final

document. | | eval | eval: true | If false, will not run the code in the code chunk. | | message | message: true |

If false, will not display any messages generated by the code. | | warning | warning: true | If false, will not

display any warning messages generated by the code. |

6.4.2. Inline R code

Up till now we’ve been writing and executing our R code in code chunks. Another great reason to use Quarto is

that we can also include our R code directly within our text. This is known as ‘inline code’. To include your code in

189

https://yihui.name/knitr/options
https://rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf


Header 1

your Quarto text you simply write `r write your code here`. This can come in really useful when you want to

include summary statistics within your text. For example, we could describe the iris dataset as follows:

Morphological characteristics (variable names:

`r names(iris)[1:4]`) were measured from

`r nrow(iris)` *Iris sp.* plants from

`r length(levels(iris$Species))` different species.

The mean Sepal length was

`r round(mean(iris$Sepal.Length), digits = 2)` mm.

which will be rendered as

Morphological characteristics (variable names: Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)

were measured from 150 iris plants from 3 different species. The mean Sepal length was 5.84 mm.

The great thing about including inline R code in your text is that these values will automatically be updated if your

data changes.

6.4.3. Images and photos

A useful feature is the ability to embed images and links to web pages (or other documents) into your Quarto

document. You can include images into your Quarto document in a number of different ways. Perhaps the simplest

method is to use the Quarto markdown format:

![Image caption](path/to/you/image){options}

Here is an example with an image taking 75% of the width and centered.

190



Header 2

![Waiting for the eclipse](images/markdown/eclipse_ready.jpg){fig-align="center" width="75%"}

resulting in:

Figure 6.9.: Waiting for the eclipse

An alternative way of including images in your document is to use the include_graphics() function from the

knitr package. The following code will produce similar output.

191



Header 1

```{r}

#| label: fig-knitr

#| fig-align: center

#| out-width: 75%

#| fig-cap: Waiting for the eclipse

knitr::include_graphics("images/markdown/eclipse_ready.jpg")

```

The code above will only work if the image file (eclipse_ready.jpg) is in the right place relative to where you

saved your .qmd file. In the example the image file is in a sub directory (folder) called images/markdown in the

directory where we saved our my_first_quarto.qmd file. You can embed images saved in many different file types

but perhaps the most common are .jpg and .png.

6.4.4. Figures

By default, figures produced by R code will be placed immediately after the code chunk they were generated from.

For example:

```{r}

#| label: fig-simple-plot

#| fig-cap: A simple plot

x <- 1:10 # create an x variable

y <- 10:1 # create a y variable

dataf <- data.frame(x = x, y = y)

plot(dataf$x, dataf$y, xlab = "x axis", ylab = "y axis")

```

192



Header 2

2 4 6 8 10

2
4

6
8

10

x axis

y 
ax

is

Figure 6.10.: A simple plot

The fig-cap: chunk option allow to provide a figure caption recognized by Quarto and using in figure numbering

and cross referencing (Section 6.4.6).

If you want to change the plot dimensions in the final document you can use the fig-width: and fig-height:

chunk options (in inches!). You can also change the alignment of the figure using the fig-align: chunk option.

```{r}

#| label: fig-simple-plot2

#| fig-cap: A shrinked figure

#| fig-width: 4

#| fig-height: 3

#| fig-align: center

x <- 1:10 # create an x variable

y <- 10:1 # create a y variable

dataf <- data.frame(x = x, y = y)

plot(dataf$x, dataf$y, xlab = "x axis", ylab = "y axis")

```

193



Header 1

2 4 6 8 10

2
4

6
8

x axis

y 
ax

is

Figure 6.11.: A shrinked figure

You can add a figure caption using the fig-cap: option.

```{r}

#| label: fig-simple-plot-cap

#| class-source: fold-show

#| fig-cap: A simple plot

#| fig-align: center

x <- 1:10 # create an x variable

y <- 10:1 # create a y variable

dataf <- data.frame(x = x, y = y)

plot(dataf$x, dataf$y, xlab = "x axis", ylab = "y axis")

```

194



Header 2

2 4 6 8 10

2
4

6
8

10

x axis

y 
ax

is

Figure 6.12.: A simple plot

If you want to suppress the figure in the final document use the fig-show: 'hide' option.

```{r}

#| label: fig-simple-plot5

#| fig-show: hide

x <- 1:10 # create an x variable

y <- 10:1 # create a y variable

dataf <- data.frame(x = x, y = y)

plot(dataf$x, dataf$y, xlab = "x axis", ylab = "y axis")

```

If you’re using a package like ggplot2 to create your plots then don’t forget you will need to make the package

available with the library() function in the code chunk (or in a preceding code chunk).

```{r}

#| label: fig-simple-ggplot

#| fig-cap: A simple ggplot

195



Header 1

x <- 1:10 # create an x variable

y <- 10:1 # create a y variable

dataf <- data.frame(x = x, y = y)

library(ggplot2)

ggplot(dataf, aes(x = x, y = y)) +

geom_point()

```

2.5

5.0

7.5

10.0

2.5 5.0 7.5 10.0
x

y

Figure 6.13.: A simple ggplot

Again, there are a large number of chunk options specific to producing plots and figures. See here for more details.

6.4.5. Tables

In Quarto, you can create tables using native markdown syntax (this doesn’t need to be in a code chunk).

| x | y |

|:---:|:---:|

196

https://rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf


Header 2

| 1 | 5 |

| 2 | 4 |

| 3 | 3 |

| 4 | 2 |

| 5 | 1 |

: Caption for a simple markdown table

Table 6.3.: Caption for a simple markdown table

x y

1 5

2 4

3 3

4 2

5 1

The :-------: lets markdown know that the line above should be treated as a header and the lines below as the

body of the table. Alignment within the table is set by the position of the :. To center align use :------:, to left

align :------ and right align ------:. Whilst it can be fun(!) to create tables with raw markup it’s only practical

for very small and simple tables.

The easiest way we know to include tables in an Quarto document is by using the kable() function from the knitr

package. The kable() function can create tables for HTML, PDF and Word outputs.

To create a table of the first 2 rows per species of the iris data frame using the kable() function simply write

library(knitr)

iris %>%

group_by(Species) %>%

197



Header 1

slice_head(n = 2) %>%

kable()

or without loading knitr but indicating where to find the kable() function.

iris %>%

group_by(Species) %>%

slice_head(n = 2) %>%

knitr::kable()

Table 6.4.: A simple kable table

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

5.1 3.5 1.4 0.2 setosa

4.9 3.0 1.4 0.2 setosa

7.0 3.2 4.7 1.4 versicolor

6.4 3.2 4.5 1.5 versicolor

6.3 3.3 6.0 2.5 virginica

5.8 2.7 5.1 1.9 virginica

The kable() function offers plenty of options to change the formatting of the table. For example, if we want to

round numeric values to one decimal place use the digits = argument. To center justify the table contents use

align = 'c' and to provide custom column headings use the col.names = argument. See ?knitr::kable for

more information.

iris %>%

group_by(Species) %>%

slice_head(n = 2) %>%

knitr::kable(

198



Header 2

digits=0,

align = 'c',

col.names = c(

'Sepal length', 'Sepal width',

'Petal length', 'Petal width', 'Species'

)

)

Table 6.5.: A nicer kable table

Sepal length Sepal width Petal length Petal width Species

5 4 1 0 setosa

5 3 1 0 setosa

7 3 5 1 versicolor

6 3 4 2 versicolor

6 3 6 2 virginica

6 3 5 2 virginica

You can further enhance the look of your kable tables using the kableExtra package (don’t forget to install the

package first!). See here for more details and a helpful tutorial.

If you want even more control and customisation options for your tables take a look at the gt [package][gt]. gt is

an acronym for grammar of tables and is based on similar principle for tables that are used for plots in ggplot.

iris %>%

group_by(Species) %>%

slice_head(n = 2) %>%

rename_with(~ gsub("([._])", " ", .x)) %>%

gt()

199

https://cran.r-project.org/web/packages/kableExtra/vignettes/awesome_table_in_html.html


Header 1

Table 6.6.: A nice gt table

Sepal Length Sepal Width Petal Length Petal Width

setosa

5.1 3.5 1.4 0.2

4.9 3.0 1.4 0.2

versicolor

7.0 3.2 4.7 1.4

6.4 3.2 4.5 1.5

virginica

6.3 3.3 6.0 2.5

5.8 2.7 5.1 1.9

Within most R packages developped to produce tables, there are options to include table captions. However, if you

want to add a table caption we recommend to do using the code chunk option in Quarto tbl-cap: since it will allow

for cross-referencing (Section 6.4.6) and better integration in the document.

```{r}

#| label: tbl-gt-table

#| tbl-cap: A nice gt table

#| echo: true

iris %>%

group_by(Species) %>%

slice_head(n=2) %>%

rename_with(~gsub("([._])", " ", .x)) %>%

gt()

```

200



Header 2

6.4.6. Cross-referencing

Cross-references make it easier for readers to navigate your document by providing numbered references and

hyperlinks to various entities like figures and tables. Once set up, tables and figures numbering happens automatically,

so you don’t need to re-number all the figures when you add or delete one.

Every cross-referenceable entity requires a label (a unique identifier) prefixed with a cross-reference type e.g. #fig-

element

For more details see the cross-referencing section on Quarto website.

6.4.6.1. Document sections

You can make cross-references to other sections of the document. To do so you need to:

1. set up a identifier for the section you want to link to. The identifier should:

• start with #sec-

• be in lower case (Figure 6.3)

• doe not have any space, using - instead

2. use the @ symbol and the identifier to refer to the section

## Cross-referencing sections {#sec-cross-ref-sections}

[...]

As seen before(@sec-cross-ref-sections)

201

https://quarto.org/docs/authoring/cross-references.html


Header 1

6.4.6.2. Images, figures and tables

For tables, images and figures, in addition to the identifier the element also needs a caption for cross-referencing to

work.

The prefix for tables is #tbl- and #fig- for images and figures.

Here is an example for an image included with markdown:

![Rocking the eclipse](images/markdown/eclipse_ready.jpg){#fig-cute-dog}

See @fig-cute-dog for an illustration.

See Figure 6.14 for an illustration.

For figures and tables produced with R code chunks, simply provide the identifier in the label chunk option and the

caption also as a chunk option.

Here is the code for a figure and a table.

```{r}

#| label: fig-cr-plot

#| fig-cap: A nice figure

x <- 1:10 # create an x variable

y <- 10:1 # create a y variable

dataf <- data.frame(x = x, y = y)

library(ggplot2)

ggplot(dataf, aes(x = x, y = y)) +

geom_point()

```

202



Header 2

Figure 6.14.: Rocking the eclipse

203



Header 1

2.5

5.0

7.5

10.0

2.5 5.0 7.5 10.0
x

y

Figure 6.15.: A nice figure

```{r}

#| label: tbl-cr-table

#| tbl-cap: A nice table

#| warning: false

library(knitr)

kable(iris[1:5,], digits=0, align = 'c', col.names = c('sepal length', 'sepal width', 'petal length', 'petal width', 'species'))

```

Table 6.7.: A nice table

sepal length sepal width petal length petal width species

5 4 1 0 setosa

5 3 1 0 setosa

5 3 1 0 setosa

5 3 2 0 setosa

204



Header 2

Table 6.7.: A nice table

sepal length sepal width petal length petal width species

5 4 1 0 setosa

Using cross-references, we can write:

As seen on @fig-cr-plot and @tbl-cr-table …

To get:

As seen on Figure 6.15 and Table 6.7 …

6.4.7. Citations and bibliography

To generate citations and a bibliography, Quarto requires:

• a properly formatted .qmd document

• a bibliographic source file including all the information for the citations. It works with awide variatey of format

but we suggest using BibTEX format.

• (optional) a CSL file which specifies the formatting to use when generating the citations and bibliography.

The bibliographic source and the (optional) csl file are specified in the yaml header as :

---

title: "My Document"

bibliography: references.bib

csl: ecology.csl

---

205



Header 1

6.4.7.1. Citations

Quarto uses the standard Pandoc markdown representation for citations (e.g. [@citation]) — citations go inside

square brackets and are separated by semicolons. Each citation must have a key, composed of ‘@’ + the citation

identifier from the database, and may optionally have a prefix, a locator, and a suffix. The citation key must begin

with a letter, digit, or , and may contain alphanumerics, , and internal punctuation characters.

Markdown Format Output (default)

Unicorns are the best [see @martin1219, pp. 33-35;

also @martin2200, chap. 1]

Unicorns are the best (see Martin 1219 pp. 33–35, also

Martin 2200 chap. 1)

Unicorns are the best [@martin2200; @martin1219] Unicorns are the best (Martin 1219, 2200)

Martin says unicorns are the best [-@martin2200] Martin says unicorns are the best (2200)

@martin1219 says unicorns are the best. Martin (1219) says unicorns are the best.

@martin1219 [p. 33] says unicorns are the best. Martin (1219 p. 33) says unicorns are the best.

6.4.7.2. Create the bibliography

By default, the list of works cited will automatically be generated and placed at the end of document if the style calls

for it. It will be placed in a div with the id refs if one exists like

### Bibliography

::: {#refs}

:::

For more details see the Citation page on Quarto website.

206

https://quarto.org/docs/authoring/footnotes-and-citations.html


6.5. Some tips and tricks

6.4.7.3. Integration with Zotero

Quarto integrates really well with Zotero if you are using the visual editor in either RStudio or VS Code.

6.5. Some tips and tricks

Problem :

When rendering my Quarto document to pdf my code runs off the edge of the page.

Solution:

Add a global_options argument at the start of your .qmd file in a code chunk:

```{r}

#| label: global_options

#| include: false

knitr::opts_chunk$set(message=FALSE, tidy.opts=list(width.cutoff=60), tidy=TRUE)

```

This code chunk won’t be displayed in the final document due to the include: false argument and you should

place the code chunk immediately after the YAML header to affect everything below that.

tidy.opts = list(width.cutoff = 60), tidy=TRUE defines the margin cutoff point and wraps text to the

next line. Play around with this value to get it right (60-80 should be OK for most documents).

With quarto you can also put the global knitr options in a knitrblock in the YAML header (see Quarto website for

details).

---

title: "My Document"

format: html

knitr:

opts_chunk:

207

https://quarto.org/docs/visual-editor/technical.html#citations
https://quarto.org/docs/visual-editor/vscode/
https://quarto.org/docs/computations/r.html#knitr-options


Header 1

message: false

tidy.opts: !expr 'list(width.cutoff=60)'

tidy: true

---

Problem:

When I load a package in my Quarto document my rendered output contains all of the startup messages and/or

warnings.

Solution:

You can load all of your packages at the start of your Quarto document in a code chunk along with setting your global

options.

```{r}

#| label: global_options

#| include: false

knitr::opts_chunk$set(

message = FALSE,

warning=FALSE,

tidy.opts=list(width.cutoff=60)

)

suppressPackageStartupMessages(library(ggplot2))

```

The message = FALSE and warning = FALSE arguments suppress messages and warnings. The suppressPackageStartupMessages(library(ggplot2))

will load the ggplot2 package but suppress startup messages.

Problem:

When rendering my Quarto document to pdf my tables and/or figures are split over two pages.

Solution:

Add a page break using the LATEX \pagebreak notation before your offending table or figure

Problem:

208



6.6. Further Information

The code in my rendered document looks ugly!

Solution:

Add the argument tidy: true to your global arguments. Sometimes, however, this can cause problems especially

with correct code indentation. The best solution is to write code that looks nice (insert space and use multiple lines)

6.6. Further Information

Although we’ve covered more than enough to get you quite far using Quarto, as with most things R related, we’ve

really only had time to scratch the surface. Happily, there’s a wealth of information available to you should you need

to expand your knowledge and experience. A good place to start is the excellent quarto website here.

Another useful and concise Quarto reference guide can be found here

A quick and easy R Markdown cheatsheet

6.7. Practical

We will create a new Rmarkdown document and edit it using basic R and Rmarkdown functions.

6.7.1. Context

We will use the awesome palmerpenguins dataset to explore and visualize data.

These data have been collected and shared by Dr. Kristen Gorman and Palmer Station, Antarctica LTER.

The package was built by Drs Allison Horst and Alison Hill, check out the official website.

The package palmerpenguins has two datasets:

• penguins_raw has the raw data of penguins observations (see ?penguins_raw for more info)

• penguins is a simplified version of the raw data (see ?penguins for more info)

209

https://quarto.org/
https://rstudio.com/wp-content/uploads/2015/03/rmarkdown-reference.pdf
https://rstudio.com/wp-content/uploads/2015/02/rmarkdown-cheatsheet.pdf
https://www.uaf.edu/cfos/people/faculty/detail/kristen-gorman.php
https://pal.lternet.edu/
https://allisonhorst.github.io/palmerpenguins/


Header 1

For this exercise, we’re gonna use the penguins dataset.

library(palmerpenguins)

head(penguins)

species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year

Adelie Torgersen 39.1 18.7 181 3750 male 2007

Adelie Torgersen 39.5 17.4 186 3800 female 2007

Adelie Torgersen 40.3 18.0 195 3250 female 2007

Adelie Torgersen NA NA NA NA NA 2007

Adelie Torgersen 36.7 19.3 193 3450 female 2007

Adelie Torgersen 39.3 20.6 190 3650 male 2007

6.7.2. Questions

1) Install the package palmerpenguins.

LIGHTBULB Solution

install.packages("palmerpenguins")

2)

• Create a new Quarto document, name it and save it.

• Delete everything after line 12.

• Add a new section title, simple text and text in bold font.

• Compile (“Knit”).

210



6.7. Practical

3)

• Add a chunk in which you load the palmerpenguins. The corresponding line of code should be hidden in

the output.

• Load also the tidyverse suite of packages. Modify the defaults to suppress all messages.

LIGHTBULB Solution

```{r}

#| echo: false

#| message:false

library(palmerpenguins)

library(tidyverse)

```

4) Add another chunk in which you build a table with the 10 first rows of the dataset.

LIGHTBULB Solution

```{r}

penguins %>%

slice(1:10) %>%

knitr::kable()

```

5) In a new section, display how many individuals, penguins species and islands we have in the dataset. This info

should appear directly in the text, you need to use inline code . Calculate the mean of the (numeric) traits measured

on the penguins.

211



Header 1

LIGHTBULB Solution

## Numerical exploration

There are `r nrow(penguins)` penguins in the dataset,

and `r length(unique(penguins$species))` different species.

The data were collected in `r length(unique(penguins$island))`

islands of the Palmer archipelago in Antarctica.

The mean of all traits that were measured on the penguins are:

```{r}

#| echo: false

penguins %>%

group_by(species) %>%

summarize(across(where(is.numeric), mean, na.rm = TRUE))

```

6) In another section, entitled ‘Graphical exploration’, build a figure with 3 superimposed histograms, each one

corresponding to the body mass of a species.

LIGHTBULB Solution

## Graphical exploration

A histogram of body mass per species:

212



6.7. Practical

```{r}

#| fig-cap: Distribution of body mass by species of penguins

ggplot(data = penguins) +

aes(x = body_mass_g) +

geom_histogram(aes(fill = species),

alpha = 0.5,

position = "identity") +

scale_fill_manual(values = c("darkorange","purple","cyan4")) +

theme_minimal() +

labs(x = "Body mass (g)",

y = "Frequency",

title = "Penguin body mass")

```

7) In another section, entitled Linear regression, fit a model of bill length as a function of body size (flipper length),

body mass and sex. Obtain the output and graphically evaluate the assumptions of the model. As reminder here is

how you fit a linear regression.

```{r}

model <- lm(Y ~ X1 + X2, data = data)

summary(model)

plot(model)

```

LIGHTBULB Solution

## Linear regression

And here is a nice model with graphical output

213



Header 1

```{r}

#| fig-cap: "Checking assumptions of the model"

m1 <- lm(bill_length_mm ~ flipper_length_mm + body_mass_g + sex, data = penguins)

summary(m1)

par(mfrow= c(2,2))

plot(m1)

```

8) Add references manually or using citr in RStudio.

1. Pick a recent publication from the researcher who shared the data, Dr Kristen Gorman. Import this publication

in your favorite references manager (we use Zotero, no hard feeling), and create a bibtex reference that you

will add to to the file mabiblio.bib.

2. Add bibliography: mabiblio.bib at the beginning of your R Markdown document (YAML).

3. Cite the reference iin the text using either typing the reference manually or using citr. To use citr, instal it

first; if everything goes well, you should see it in the pulldown menu Addins . Then simply use Insert

citations in the pull-down menu Addins.

4. Compile.

9) Change the default citation format (Chicago style) into the The American Naturalist format. It can be found here

https://www.zotero.org/styles. To do soo, add csl: the-american-naturalist.csl in the YAML.

10) Build your report in html, pdf and docx format.

Example of output

You can see an example of the Rmarkdown source file and pdf output

214

https://www.zotero.org/styles
data/examples/rmarkdown_practical.Rmd


6.7. Practical

Figure 6.16.: Happy coding

215



Chapter 7
Version control with Git and GitHub

This Chapter will introduce you to the basics of using a version control system to keep track of all your important R

code and facilitate collaboration with colleagues and the wider world. This Chapter will focus on using the software

‘Git’ in combination with the web-based hosting service ‘GitHub’. By the end of the Chapter, you will be able to

install and configure Git and GitHub on your computer and setup and work with a version controlled project in

RStudio. We won’t be covering more advanced topics such as branching, forking and pull requests in much detail but

we do give an overview later in Section 7.8.

Just a few notes of caution. In this Chapter we’ll be using RStudio to interface with Git as it gives you a nice friendly

graphical user interface which generally makes life a little bit easier (and who doesn’t want that?). However, one

downside to using RStudio with Git is that RStudio only provides pretty basic Git functionality through its menu

system. That’s fine for most of what we’ll be doing during this Chapter (although we will introduce a few Git

commands as we go along) but if you really want to benefit from using Git’s power you will need to learn some Git

commands (see Section 7.10) and syntax and change for another IDE such as VSCode which is much much better

when it comes to integration with github. Git can become a little bewildering and frustrating when you first start

using it. This is mostly due to the terminology and liberal use of jargon associated with Git, but there’s no hiding

the fact that it’s quite easy to get yourself and your Git repository into a pickle. Therefore, we’ve tried hard to keep

things as straight forward as we can during this Chapter and as a result we do occasionally show you a couple of

very ‘un-Git’ ways of doing things (mostly about reverting to previous versions of documents). Don’t get hung up

about this, there’s no shame to using these low tech solutions and if it works then it works. Lastly, GitHub was not

designed to host very large files and will warn you if you try to add files greater than 50 MB and block you adding

files greater than 100 MB. If your project involves using large file sizes there are a few solutions but we find the

easiest solution is to host these files elsewhere (Googledrive, Dropbox etc) and create a link to them in a README

file or R markdown document on Github.

216

https://code.visualstudio.com/
https://help.github.com/en/github/managing-large-files/configuring-git-large-file-storage


7.1. What is version control?

7.1. What is version control?

A Version Control System (VCS) keeps a record of all the changes you make to your files that make up a particular

project and allows you to revert to previous versions of files if you need to. To put it another way, if you muck things

up or accidentally lose important files you can easily roll back to a previous stage in your project to sort things out.

Version control was originally designed for collaborative software development, but it’s equally useful for scientific

research and collaborations (although admittedly a lot of the terms, jargon and functionality are focused on the

software development side). There are many different version control systems currently available, but we’ we’ll focus

on using Git, because it’s free and open source and it integrates nicely with RStudio. This means that its can easily

become part of your usual workflow with minimal additional overhead.

7.2. Why use version control?

So why should you worry about version control? Well, first of all it helps avoid this (familiar?) situation when you’re

working on a project usually arising from this (familiar?) scenario.

Version control automatically takes care of keeping a record of all the versions of a particular file and allows you to

revert back to previous versions if you need to. Version control also helps you (especially the future you) keep track

of all your files in a single place and it helps others (especially collaborators) review, contribute to and reuse your

work through the GitHub website. Lastly, your files are always available from anywhere and on any computer, all

you need is an internet connection.

7.3. What is Git and GitHub?

Git is a version control system originally developed by Linus Torvalds that lets you track changes to a set of files.

These files can be any type of file including the menagerie of files that typically make up a data orientated project

(.pdf, .Rmd, .docx, .txt, .jpg etc) although plain text files work the best. All the files that make up a project is called a

repository (or just repo).

GitHub is a web-based hosting service for Git repositories which allows you to create a remote copy of your local

version-controlled project. This can be used as a backup or archive of your project or make it accessible to you and

to your colleagues so you can work collaboratively.

At the start of a project we typically (but not always) create a remote repository on GitHub, then clone (think of

this as copying) this repository to our local computer (the one in front of you). This cloning is usually a one time

217

https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Linus_Torvalds


Chapter 7. Version control with Git and GitHub

Figure 7.1.: Why you need version control (source: PhDComics)

218

https://phdcomics.com/comics/archive.php?comicid=1531


7.4. Getting started

event and you shouldn’t need to clone this repository again unless you really muck things up. Once you have cloned

your repository you can then work locally on your project as usual, creating and saving files for your data analysis

(scripts, R markdown documents, figures etc). Along the way you can take snapshots (called commits) of these files

after you’ve made important changes. We can then push these changes to the remote GitHub repository to make

a backup or make available to our collaborators. If other people are working on the same project (repository), or

maybe you’re working on a different computer, you can pull any changes back to your local repository so everything

is synchronised.

Figure 7.2.: How git works

7.4. Getting started

This Chapter assumes that you have already installed the latest versions of R and an IDE (RStudio or VSCode). If

you haven’t done this yet you can find instructions in Section 1.1.1.

7.4.1. Install Git

To get started, you first need to install Git. If you’re lucky you may already have Git installed (especially if you

have a Mac or Linux computer). You can check if you already have Git installed by clicking on the Terminal tab

in RStudio and typing git --version. If you see something that looks like git version 2.25.0 (the version

number may be different on your computer) then you already have Git installed (happy days). If you get an error

(something like git: command not found) this means you don’t have Git installed (yet!).

219



Chapter 7. Version control with Git and GitHub

You can also do this check outside RStudio by opening up a separate Terminal if you want. On Windows go to the

‘Start menu’ and in the search bar (or run box) type cmd and press enter. On a Mac go to ‘Applications’ in Finder,

click on the ‘Utilities’ folder and then on the ‘Terminal’ program. On a Linux machine simply open the Terminal

(Ctrl+Alt+T often does it).

To install Git on a Windows computer we recommend you download and install Git for Windows (also known as

‘Git Bash’). You can find the download file and installation instructions here.

For those of you using a Mac computer we recommend you download Git from here and install in the usual way

(double click on the installer package once downloaded). If you’ve previously installed Xcode on your Mac and want

to use a more up to date version of Git then you will need to follow a few more steps documented here. If you’ve

never heard of Xcode then don’t worry about it!

For those of you lucky enough to be working on a Linux machine you can simply use your OS package manager to

install Git from the official repository. For Ubuntu Linux (or variants of) open your Terminal and type

sudo apt update

sudo apt install git

You will need administrative privileges to do this. For other versions of Linux see here for further installation

instructions.

Whatever version of Git you’re installing, once the installation has finished verify that the installation process has

been successful by running the command git --version in the Terminal tab in RStudio (as described above). On

some installations of Git (yes we’re looking at you MS Windows) this may still produce an error as you will also

need to setup RStudio so it can find the Git executable (described in Section 7.4.3).

7.4.2. Configure Git

After installing Git, you need to configure it so you can use it. Click on the Terminal tab in the Console window

again and type the following:

git config --global user.email 'you@youremail.com'

git config --global user.name 'Your Name'

220

https://git-scm.com/downloads
https://git-scm.com/downloads
https://github.com/timcharper/git_osx_installer
https://git-scm.com/download/linux


7.4. Getting started

substituting 'Your Name' for your actual name and 'you@youremail.com' with your email address. We recom-

mend you use your University email address (if you have one) as you will also use this address when you register for

your GitHub account (coming up in a bit).

If this was successful, you should see no error messages from these commands. To verify that you have successfully

configured Git type the following into the Terminal

git config --global --list

You should see both your user.name and user.email configured.

7.4.3. Configure RStudio

As you can see above, Git can be used from the command line, but it also integrates well with RStudio, providing a

friendly graphical user interface. If you want to use RStudio’s Git integration (we recommend you do - at least at

the start), you need to check that the path to the Git executable is specified correctly. In RStudio, go to the menu

Tools -> Global Options -> Git/SVN and make sure that ‘Enable version control interface for RStudio projects’

is ticked and that the ‘Git executable:’ path is correct for your installation. If it’s not correct hit the Browse...

button and navigate to where you installed git and click on the executable file. You will need to restart RStudio after

doing this.

7.4.4. Configure VSCode

to develop

7.4.5. Register a GitHub account

If all you want to do is to keep track of files and file versions on your local computer then Git is sufficient. If however,

you would like to make an off-site copy of your project or make it available to your collaborators then you will need

a web-based hosting service for your Git repositories. This is where GitHub comes into play (there are also other

services like GitLab, Bitbucket and Savannah). You can sign up for a free account on GitHub here. You will need to

specify a username, an email address and a strong password. We suggest that you use your University email address

(if you have one) as this will also allow you to apply for a free educator or researcher account later on which gives

you some useful benefits (don’t worry about this now though). When it comes to choosing a username we suggest

you give this some thought. Choose a short(ish) rather than a long username, use all lowercase and hyphenate if you

221

https://about.gitlab.com/
https://bitbucket.org/product
https://savannah.gnu.org/
https://github.com/join?source=header-home
https://help.github.com/en/github/teaching-and-learning-with-github-education/applying-for-an-educator-or-researcher-discount
https://help.github.com/en/github/teaching-and-learning-with-github-education/about-github-education-for-educators-and-researchers


Chapter 7. Version control with Git and GitHub

Figure 7.3.: Providing path to git software in RStudio

want to include multiple words, find a way of incorporating your actual name and lastly, choose a username that you

will feel comfortable revealing to your future employer!

Next click on the ‘Select a plan’ (you may have to solve a simple puzzle first to verify you’re human) and choose the

‘Free Plan’ option. Github will send an email to the email address you supplied for you to verify.

Once you’ve completed all those steps you should have both Git and GitHub setup up ready for you to use (Finally!).

7.5. Setting up a project

7.5.1. in RStudio

Now that you’re all set up, let’s create your first version controlled RStudio project. There are a couple of different

approaches you can use to do this. You can either setup a remote GitHub repository first then connect an RStudio

project to this repository (we’ll call this Option 1). Another option is to setup a local repository first and then link

a remote GitHub repository to this repository (Option 2). You can also connect an existing project to a GitHub

repository but we won’t cover this here. We suggest that if you’re completely new to Git and GitHub then use Option

1 as this approach sets up your local Git repository nicely and you can push and pull immediately. Option 2 requires

222



7.5. Setting up a project

a little more work and therefore there are more opportunities to go wrong. We will cover both of these options

below.

7.5.2. Option 1 - GitHub first

To use the GitHub first approach you will first need to create a repository (repo) on GitHub. Go to your GitHub page

and sign in if necessary. Click on the ‘Repositories’ tab at the top and then on the green ‘New’ button on the right

Figure 7.4.: Creating a new repository on Github

Give your new repo a name (let’s call it first_repo for this Chapter), select ‘Public’, tick on the ‘Initialize this

repository with a README’ (this is important) and then click on ‘Create repository’ (ignore the other options for

now).

Figure 7.5.: Configuring a new repository on Github

Your new GitHub repository will now be created. Notice the README has been rendered in GitHub and is in

223

https://github.com/


Chapter 7. Version control with Git and GitHub

markdown (.md) format (see Chapter 6 on R markdown if this doesn’t mean anything to you). Next click on the

green ‘Clone or Download’ button and copy the https//... URL that pops up for later (either highlight it all and

copy or click on the copy to clipboard icon to the right).

Figure 7.6.: Getting the cloning path for a directory on github

Ok, we now switch our attention to RStudio. In RStudio click on the File -> New Project menu. In the pop up

window select Version Control.

Figure 7.7.: Setting a new Github project in RStudio

Now paste the the URL you previously copied from GitHub into the Repository URL: box. This should then

automatically fill out the Project Directory Name: section with the correct repository name (it’s important

that the name of this directory has the same name as the repository you created in GitHub). You can then select

where you want to create this directory by clicking on the Browse button opposite the Create project as a

subdirectory of: option. Navigate to where you want the directory created and click OK. We also tick the Open

224



7.5. Setting up a project

in new session option.

Figure 7.8.

RStudio will now create a new directory with the same name as your repository on your local computer and will

then clone your remote repository to this directory. The directory will contain three new files; first_repo.Rproj

(or whatever you called your repository), README.md and .gitignore. You can check this out in the Files tab

usually in the bottom right pane in RStudio. You will also have a Git tab in the top right pane with two files listed

(we will come to this later on in the Chapter). That’s it for Option 1, you now have a remote GitHub repository set up

and this is linked to your local repository managed by RStudio. Any changes you make to files in this directory will

be version controlled by Git.

7.5.3. Option 2 - RStudio first

An alternative approach is to create a local RStudio project first and then link to a remote Github repository. As we

mentioned before, this option is more involved than Option 1 so feel free to skip this now and come back later to

it if you’re interested. This option is also useful if you just want to create a local RStudio project linked to a local

Git repository (i.e. no GitHub involved). If you want to do this then just follow the instructions below omitting the

GitHub bit.

In RStudio click on the File -> New Project menu and select the New Directory option.

In the pop up window select the New Project option

In the New Project window specify a Directory name (choose second_repo for this Chapter) and select where

you would like to create this directory on you computer (click the Browse button). Make sure the Create a git

225



Chapter 7. Version control with Git and GitHub

Figure 7.9.

Figure 7.10.

226



7.5. Setting up a project

Figure 7.11.

repository option is ticked

Figure 7.12.

This will create a version controlled directory called second_repo on your computer that contains two files,

second_repo.Rproj and .gitignore (there might also be a .Rhistory file but ignore this). You can check this

by looking in the Files tab in RStudio (usually in the bottom right pane).

OK, before we go on to create a repository on GitHub we need to do one more thing - we need to place our

second_repo.Rproj and .gitignorefiles under version control. Unfortunately we haven’t covered this in detail

yet so just follow the next few instructions (blindly!) and we’ll revisit them in Section 7.6 of this Chapter.

To get our two files under version control click on the ‘Git’ tab which is usually in the top tight pane in RStudio

227



Chapter 7. Version control with Git and GitHub

Figure 7.13.

228



7.5. Setting up a project

Figure 7.14.

229



Chapter 7. Version control with Git and GitHub

You can see that both files are listed. Next, tick the boxes under the ‘Staged’ column for both files and then click on

the ‘Commit’ button.

Figure 7.15.

This will take you to the ‘Review Changes’ window. Type in the commit message ‘First commit’ in the ‘Commit

message’ window and click on the ‘Commit’ button. A new window will appear with some messages which you

can ignore for now. Click ‘Close’ to close this window and also close the ‘Review Changes’ window. The two files

should now have disappeared from the Git pane in RStudio indicating a successful commit.

OK, that’s those two files now under version control. Now we need to create a new repository on GitHub. In your

browser go to your GitHub page and sign in if necessary. Click on the ‘Repositories’ tab and then click on the green

‘New’ button on the right. Give your new repo the name second_repo (the same as your version controlled directory

name) and select ‘Public’. This time do not tick the ‘Initialize this repository with a README’ (this is important)

and then click on ‘Create repository’.

This will take you to a Quick setup page which provides you with some code for various situations. The code we are

interested in is the code under ...or push an existing repository from the command line heading.

Highlight and copy the first line of code (note: yours will be slightly different as it will include your GitHub username

not mine)

git remote add origin https://github.com/alexd106/second_repo.git

230

https://github.com/


7.5. Setting up a project

Figure 7.16.

Figure 7.17.

231



Chapter 7. Version control with Git and GitHub

Figure 7.18.

Switch to RStudio, click on the ‘Terminal’ tab and paste the command into the Terminal. Now go back to GitHub

and copy the second line of code

git push -u origin master

and paste this into the Terminal in RStudio. You should see something like this

Figure 7.19.

If you take a look at your repo back on GitHub (click on the /second_repo link at the top) you will see the

second_repo.Rproj and .gitignore files have now been pushed to GitHub from your local repository.

The last thing we need to do is create and add a README file to your repository. A README file describes your

project and is written using the same Markdown language you learned in Chapter 6. A good README file makes it

easy for others (or the future you!) to use your code and reproduce your project. You can create a README file in

RStudio or in GitHub. Let’s use the second option.

In your repository on GitHub click on the green Add a README button.

232



7.5. Setting up a project

Figure 7.20.

Figure 7.21.

233



Chapter 7. Version control with Git and GitHub

Now write a short description of your project in the <> Edit new file section and then click on the green Commit

new file button.

Figure 7.22.

You should now see the README.md file listed in your repository. It won’t actually exist on your computer yet as you

will need to pull these changes back to your local repository, but more about that in the next section.

Whether you followed Option 1 or Option 2 (or both) you have now successfully setup a version controlled RStudio

project (and associated directory) and linked this to a GitHub repository. Git will now monitor this directory for

any changes you make to files and also if you add or delete files. If the steps above seem like a bit of an ordeal, just

remember, you only need to do this once for each project and it gets much easier over time.

7.5.4. in VSCode

to develop

234



7.6. Using Git with RStudio

7.6. Using Git with RStudio

Now that we have our project and repositories (both local and remote) set up, it’s finally time to learn how to use Git

in your IDE!

Typically, when using Git your workflow will go something like this:

1. You create/delete and edit files in your project directory on your computer as usual (saving these changes as

you go)

2. Once you’ve reached a natural ‘break point’ in your progress (i.e. you’d be sad if you lost this progress) you

stage these files

3. You then commit the changes you made to these staged files (along with a useful commit message) which

creates a permanent snapshot of these changes

4. You keep on with this cycle until you get to a point when you would like to push these changes to GitHub

5. If you’re working with other people on the same project you may also need to pull their changes to your local

computer

Figure 7.23.

OK, let’s go through an example to help clarify this workflow.

Open up the first_repo.Rproj you created previously during Option 1. Either use the File -> Open Project

menu or click on the top right project icon and select the appropriate project.

Create an R markdown document inside this project by clicking on the File -> New File -> R markdown menu

(remember Chapter 6?).

Once created, we can delete all the example R markdown code (except the YAML header) as usual and write some

interesting R markdown text and include a plot. We’ll use the inbuilt cars dataset to do this. Save this file (cmd + s

235



Chapter 7. Version control with Git and GitHub

Figure 7.24.

for Mac or ctrl + s in Windows). Your R markdown document should look something like the following (it doesn’t

matter if it’s not exactly the same).

Figure 7.25.

Take a look at the ‘Git’ tab which should list your new R markdown document (first_doc.Rmd in this example)

along with first_repo.Rproj, and .gitignore (you created these files previously when following Option 1).

Following our workflow, we now need to stage these files. To do this tick the boxes under the ‘Staged’ column for all

files. Notice that there is a status icon next to the box which gives you an indication of how the files were changed. In

our case all of the files are to be added (capital A) as we have just created them.

After you have staged the files the next step is to commit the files. This is done by clicking on the ‘Commit’ button.

After clicking on the ‘Commit’ button you will be taken to the ‘Review Changes’ window. You should see the three

files you staged from the previous step in the left pane. If you click on the file name first_doc.Rmd you will see the

changes you have made to this file highlighted in the bottom pane. Any content that you have added is highlighted in

green and deleted content is highlighted in red. As you have only just created this file, all the content is highlighted

236



7.6. Using Git with RStudio

Figure 7.26.

Figure 7.27.

Figure 7.28.

237



Chapter 7. Version control with Git and GitHub

in green. To commit these files (take a snapshot) first enter a mandatory commit message in the ‘Commit message’

box. This message should be relatively short and informative (to you and your collaborators) and indicate why you

made the changes, not what you changed. This makes sense as Git keeps track of what has changed and so it is best

not to use commit messages for this purpose. It’s traditional to enter the message ‘First commit’ (or ‘Initial commit’)

when you commit files for the first time. Now click on the ‘Commit’ button to commit these changes.

Figure 7.29.

A summary of the commit you just performed will be shown. Now click on the ‘Close’ button to return to the ‘Review

Changes’ window. Note that the staged files have now been removed.

Figure 7.30.

Now that you have committed your changes the next step is to push these changes to GitHub. Before you push your

changes it’s good practice to first pull any changes from GitHub. This is especially important if both you and your

collaborators are working on the same files as it keeps you local copy up to date and avoids any potential conflicts. In

this case your repository will already be up to date but it’s a good habit to get into. To do this, click on the ‘Pull’

button on the top right of the ‘Review Changes’ window. Once you have pulled any changes click on the green ‘Push’

button to push your changes. You will see a summary of the push you just performed. Hit the ‘Close’ button and

238



7.6. Using Git with RStudio

then close the ‘Review Changes’ window.

Figure 7.31.

To confirm the changes you made to the project have been pushed to GitHub, open your GitHub page, click on

the Repositories link and then click on the first_repo repository. You should see four files listed including the

first_doc.Rmd you just pushed. Along side the file name you will see your last commit message (‘First commit’ in

this case) and when you made the last commit.

Figure 7.32.

To see the contents of the file click on the first_doc.Rmd file name.

7.6.1. Tracking changes

After following the steps outlined above, you will have successfully modified an RStudio project by creating a new

R markdown document, staged and then committed these changes and finally pushed the changes to your GitHub

repository. Now let’s make some further changes to your R markdown file and follow the workflow once again but

this time we ’ll take a look at how to identify changes made to files, examine the commit history and how to restore

to a previous version of the document.

In RStudio open up the first_repo.Rproj file you created previously (if not already open) then open the

first_doc.Rmd file (click on the file name in the Files tab in RStudio).

239



Chapter 7. Version control with Git and GitHub

Figure 7.33.

Let’s make some changes to this document. Delete the line beginning with ‘My first version controlled …’ and

replace it with something more informative (see figure below). We will also change the plotted symbols to red and

give the plot axes labels. Lastly, let’s add a summary table of the dataframe using the kable() and summary()

functions (you may need to install the knitr package if you haven’t done so previously to use the kable() function)

and finally render this document to pdf by changing the YAML option to output: pdf_document.

Figure 7.34.

Now save these changes and then click the knit button to render to pdf. A new pdf file named first_doc.pdf will

be created which you can view by clicking on the file name in the Files tab in RStudio.

Notice that these two files have been added to the Git tab in RStudio. The status icons indicate that the

first_doc.Rmd file has been modified (capital M) and the first_doc.pdf file is currently untracked (question

mark).

240



7.6. Using Git with RStudio

Figure 7.35.

To stage these files tick the ‘Staged’ box for each file and click on the ‘Commit’ button to take you to the ‘Review

Changes’ window

Figure 7.36.

Before you commit your changes notice the status of first_doc.pdf has changed from untracked to added (A).

You can view the changes you have made to the first_doc.Rmd by clicking on the file name in the top left pane

which will provide you with a useful summary of the changes in the bottom pane (technically called diffs). Lines that

have been deleted are highlighted in red and lines that have been added are highlighted in green (note that from Git’s

point of view, a modification to a line is actually two operations: the removal of the original line followed by the

creation of a new line). Once you’re happy, commit these changes by writing a suitable commit message and click on

the ‘Commit’ button.

To push the changes to GitHub, click on the ‘Pull’ button first (remember this is good practice even though you

are only collaborating with yourself at the moment) and then click on the ‘Push’ button. Go to your online GitHub

repository and you will see your new commits, including the first_doc.pdf file you created when you rendered

your R markdown document.

To view the changes in first_doc.Rmd click on the file name for this file.

241



Chapter 7. Version control with Git and GitHub

Figure 7.37.

Figure 7.38.

242



7.6. Using Git with RStudio

Figure 7.39.

7.6.2. Commit history

One of the great things about Git and GitHub is that you can view the history of all the commits you have made

along with the associated commit messages. You can do this locally using RStudio (or the Git command line) or if

you have pushed your commits to GitHub you can check them out on the GitHub website.

To view your commit history in RStudio click on the ‘History’ button (the one that looks like a clock) in the Git pane

to bring up the history view in the ‘Review Changes’ window. You can also click on the ‘Commit’ or ‘Diff’ buttons

which takes you to the same window (you just need to additionally click on the ‘History’ button in the ‘Review

Changes’ window).

The history window is split into two parts. The top pane lists every commit you have made in this repository (with

associated commit messages) starting with the most recent one at the top and oldest at the bottom. You can click on

each of these commits and the bottom pane shows you the changes you have made along with a summary of the Date

the commit was made, Author of the commit and the commit message (Subject). There is also a unique identifier

for the commit (SHA - Secure Hash Algorithm) and a Parent SHA which identifies the previous commit. These

SHA identifiers are really important as you can use them to view and revert to previous versions of files (details

below Section 7.6.3). You can also view the contents of each file by clicking on the ‘View file @ SHA key‘ link (in

243



Chapter 7. Version control with Git and GitHub

Figure 7.40.

our case ’View file @ 2b4693d1’).

Figure 7.41.

You can also view your commit history on GitHub website but this will be limited to only those commits you have

already pushed to GitHub. To view the commit history navigate to the repository and click on the ‘commits’ link (in

our case the link will be labelled ‘3 commits’ as we have made 3 commits).

You will see a list of all the commits you have made, along with commit messages, date of commit and the SHA

identifier (these are the same SHA identifiers you saw in the RStudio history). You can even browse the repository at

a particular point in time by clicking on the <> link. To view the changes in files associated with the commit simply

click on the relevant commit link in the list.

Which will display changes using the usual format of green for additions and red for deletions.

244



7.6. Using Git with RStudio

Figure 7.42.

Figure 7.43.

245



Chapter 7. Version control with Git and GitHub

Figure 7.44.

7.6.3. Reverting changes

One the great things about using Git is that you are able to revert to previous versions of files if you’ve made a

mistake, broke something or just prefer and earlier approach. How you do this will depend on whether the changes

you want to discard have been staged, committed or pushed to GitHub. We’ll go through some common scenarios

below mostly using RStudio but occasionally we will need to resort to using the Terminal (still in RStudio though).

Changes saved but not staged, committed or pushed

If you have saved changes to your file(s) but not staged, committed or pushed these files to GitHub you can right

click on the offending file in the Git pane and select ‘Revert …’. This will roll back all of the changes you have made

to the same state as your last commit. Just be aware that you cannot undo this operation so use with caution.

You can also undo changes to just part of a file by opening up the ‘Diff’ window (click on the ‘Diff’ button in the Git

pane). Select the line you wish to discard by double clicking on the line and then click on the ‘Discard line’ button.

In a similar fashion you can discard chunks of code by clicking on the ‘Discard chunk’ button.

246



7.6. Using Git with RStudio

Figure 7.45.

Figure 7.46.

247



Chapter 7. Version control with Git and GitHub

Staged but not committed and not pushed

If you have staged your files, but not committed them then simply unstage them by clicking on the ‘Staged’ check

box in the Git pane (or in the ‘Review Changes’ window) to remove the tick. You can then revert all or parts of the

file as described in the section above.

Staged and committed but not pushed

If you have made a mistake or have forgotten to include a file in your last commit which you have not yet pushed

to GitHub, you can just fix your mistake, save your changes, and then amend your previous commit. You can do

this by staging your file and then tick the ‘Amend previous commit‘ box in the ’Review Changes’ window before

committing.

Figure 7.47.

If we check out our commit history you can see that our latest commit contains both changes to the file rather than

having two separate commits. We use the amend commit approach alot but it’s important to understand that you

should not do this if you have already pushed your last commit to GitHub as you are effectively rewriting history and

all sorts bad things may happen!

If you spot a mistake that has happened multiple commits back or you just want to revert to a previous version of a

document you have a number of options.

248



7.6. Using Git with RStudio

Figure 7.48.

249



Chapter 7. Version control with Git and GitHub

Option 1 - (probably the easiest but very unGit - but like, whatever!) is to look in your commit history in RStudio,

find the commit that you would like to go back to and click on the ‘View file @’ button to show the file contents.

Figure 7.49.

You can then copy the contents of the file to the clipboard and paste it into your current file to replace your duff code

or text. Alternatively, you can click on the ‘Save As’ button and save the file with a different file name. Once you

have saved your new file you can delete your current unwanted file and then carry on working on your new file. Don’t

forget to stage and commit this new file.

Option 2 - (Git like) Go to your Git history, find the commit you would like to roll back to and write down (or copy)

its SHA identifier.

Now go to the Terminal in RStudio and type git checkout <SHA> <filename>. In our case the SHA key is

2b4693d1 and the filename is first_doc.Rmd so our command would look like this:

git checkout 2b4693d1 first_doc.Rmd

The command above will copy the selected file version from the past and place it into the present. RStudio may ask

you whether you want to reload the file as it now changed - select yes. You will also need to stage and commit the

file as usual.

250



7.6. Using Git with RStudio

Figure 7.50.

If you want to revert all your files to the same state as a previous commit rather than just one file you can use (the

single ‘dot’ . is important otherwise your HEAD will detach!):

git rm -r .

git checkout 2b4693d1 .

Note that this will delete all files that you have created since you made this commit so be careful!

Staged, committed and pushed

If you have already pushed your commits to GitHub you can use the git checkout strategy described above and

then commit and push to update GitHub (although this is not really considered ‘best’ practice). Another approach

would be to use git revert (Note: as far as we can tell git revert is not the same as the ‘Revert’ option in

RStudio). The revert command in Git essentially creates a new commit based on a previous commit and therefore

preserves all of your commit history. To rollback to a previous state (commit) you first need to identify the SHA for

the commit you wish to go back to (as we did above) and then use the revert command in the Terminal. Let’s say

we want to revert back to our ‘First commit’ which has a SHA identifier d27e79f1.

251



Chapter 7. Version control with Git and GitHub

Figure 7.51.

Figure 7.52.

252



7.6. Using Git with RStudio

We can use the revert command as shown below in the Terminal. The --no-commit option is used to prevent us

from having to deal with each intermediate commit.

git revert --no-commit d27e79f1..HEAD

Your first_doc.Rmd file will now revert back to the same state as it was when you did your ‘First commit’. Notice

also that the first_doc.pdf file has been deleted as this wasn’t present when we made our first commit. You can

now stage and commit these files with a new commit message and finally push them to GitHub. Notice that if we

look at our commit history all of the commits we have made are still present.

Figure 7.53.

and our repo on GitHub also reflects these changes

253



Chapter 7. Version control with Git and GitHub

Figure 7.54.

7.7. Using Git with VSCode

Now that we have our project and repositories (both local and remote) set up, it’s finally time to learn how to use Git

in VSCode!

Typically, when using Git your workflow will go something like this:

1. You create/delete and edit files in your project directory on your computer as usual (saving these changes as

you go)

2. Once you’ve reached a natural ‘break point’ in your progress (i.e. you’d be sad if you lost this progress) you

stage these files

3. You then commit the changes you made to these staged files (along with a useful commit message) which

creates a permanent snapshot of these changes

4. You keep on with this cycle until you get to a point when you would like to push these changes to GitHub

5. If you’re working with other people on the same project you may also need to pull their changes to your local

computer

OK, let’s go through an example to help clarify this workflow.

254



7.8. Collaborate with Git

Figure 7.55.

Tracking changes

Commit History

Reverting changes

7.8. Collaborate with Git

GitHub is a great tool for collaboration, it can seem scary and complicated at first, but it is worth investing some time

to learn how it works. What makes GitHub so good for collaboration is that it is a distributed system, which means

that every collaborator works on their own copy of the project and changes are then merged together in the remote

repository. There are two main ways you can set up a collaborative project on GitHub. One is the workflow we went

through above, where everybody connects their local repository to the same remote one; this system works well

with small projects where different people mainly work on different aspects of the project but can quickly become

unwieldy if many people are collaborating and are working on the same files (merge misery!). The second approach

consists of every collaborator creating a copy (or fork) of the main repository, which becomes their remote repository.

Every collaborator then needs to send a request (a pull request) to the owner of the main repository to incorporate

any changes into the main repository and this includes a review process before the changes are integrated. More

detail of these topics can be found in Section 7.10.

7.9. Git tips

Generally speaking you should commit often (including amended commits) but push much less often. This makes

collaboration easier and also makes the process of reverting to previous versions of documents much more straight

forward. We generally only push changes to GitHub when we’re happy for our collaborators (or the rest of the world)

255



Chapter 7. Version control with Git and GitHub

to see our work. However, this is entirely up to you and depends on the project (and who you are working with) and

what your priorities are when using Git.

If you don’t want to track a file in your repository (maybe they are too large or transient files) you can get Git to ignore

the file by adding it to the .gitignore file. On RStudio, in the git pane, you can right clicking on the filename to

exclude and selecting ‘Ignore…’

Figure 7.56.

This will add the filename to the .gitignore file. If you want to ignore multiple files or a particular type of file

you can also include wildcards in the .gitignore file. For example to ignore all png files you can include the

expression *.png in your .gitignore file and save.

If it all goes pear shaped and you end up completely trashing your Git repository don’t despair (we’ve all been there!).

As long as your GitHub repository is good, all you need to do is delete the offending project directory on your

computer, create a new RStudio project and link this with your remote GitHub repository using Option 2 (7.5.3).

Once you have cloned the remote repository you should be good to go.

7.10. Further resources

There are many good online guides to learn more about git and GitHub and as with any open source software there is

a huge community that can be a great resource:

• The British Ecological Society guide to Reproducible Code

• The GitHub guides

• The Mozilla Science Lab GitHub for Collaboration on Open Projects guide

• Jenny Bryan’s Happy Git and GitHub. We borrowed the idea (but with different content) of RStudio first,

RStudio second in the ‘Setting up a version controlled Project in RStudio’ section.

256

https://www.britishecologicalsociety.org/wp-content/uploads/2019/06/BES-Guide-Reproducible-Code-2019.pdf
https://guides.github.com/
https://mozillascience.github.io/working-open-workshop/github_for_collaboration/
https://happygitwithr.com/


7.11. Practical

• Melanie Frazier’s GitHub: A beginner’s guide to going back in time (aka fixing mistakes). We followed this

structure (with modifications and different content) in the ‘Reverting changes’ section.

• If you have done something terribly wrong and don’t know how to fix it try Oh Shit, Git or if you’re easily

offended Dangit, Git

These are only a couple of examples, all you need to do is search for “version control with git and GitHub” to see

how huge the community around these open source projects is and how many free resources are available for you to

become a version control expert.

7.11. Practical

7.11.1. Context

We will configure Rstudio to work with our github account, then create a new project and start using github. To

have some data I suggest to use the awesome palmerpenguins dataset .

7.11.2. Information of the data

These data have been collected and shared by Dr. Kristen Gorman and Palmer Station, Antarctica LTER.

The package was built by Drs Allison Horst and Alison Hill, check out the official website.

The package palmerpenguins has two datasets.

library(palmerpenguins)

The dataset penguins is a simplified version of the raw data; see ?penguins for more info:

head(penguins)

species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year

Adelie Torgersen 39.1 18.7 181 3750 male 2007

Adelie Torgersen 39.5 17.4 186 3800 female 2007

Adelie Torgersen 40.3 18.0 195 3250 female 2007

Adelie Torgersen NA NA NA NA NA 2007

257

https://ohi-science.org/news/github-going-back-in-time
https://ohshitgit.com/
https://dangitgit.com/
https://www.uaf.edu/cfos/people/faculty/detail/kristen-gorman.php
https://pal.lternet.edu/
https://allisonhorst.github.io/palmerpenguins/


Chapter 7. Version control with Git and GitHub

species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year

Adelie Torgersen 36.7 19.3 193 3450 female 2007

Adelie Torgersen 39.3 20.6 190 3650 male 2007

The other dataset penguins_raw has the raw data; see ?penguins_raw for more info:

head(penguins_raw)

stu-

dy-

Name

Sam-

ple

Num-

ber Species

Re-

gion

Is-

land Stage

In-

di-

vid-

ual

ID

Clutch

Com-

ple-

tion

Date

Egg

Cul-

men

Length

(mm)

Cul-

men

Depth

(mm)

Flip-

per

Length

(mm)

Body

Mass

(g) Sex

Delta

15

N

(o/oo)

Delta

13 C

(o/oo)

Com-

ments

PAL07081 Adelie

Penguin

(Py-

goscelis

adeliae)

An-

vers

Torg-

ersen

Adult,

1

Egg

Stage

N1A1Yes 2007-

11-

11

39.1 18.7 181 3750 MALENA NA Not

enough

blood

for iso-

topes.

PAL07082 Adelie

Penguin

(Py-

goscelis

adeliae)

An-

vers

Torg-

ersen

Adult,

1

Egg

Stage

N1A2Yes 2007-

11-

11

39.5 17.4 186 3800 FE-

MALE

8.94956 -

24.69454

NA

PAL07083 Adelie

Penguin

(Py-

goscelis

adeliae)

An-

vers

Torg-

ersen

Adult,

1

Egg

Stage

N2A1Yes 2007-

11-

16

40.3 18.0 195 3250 FE-

MALE

8.36821 -

25.33302

NA

PAL07084 Adelie

Penguin

(Py-

goscelis

adeliae)

An-

vers

Torg-

ersen

Adult,

1

Egg

Stage

N2A2Yes 2007-

11-

16

NA NA NA NA NA NA NA Adult

not

sam-

pled.

258



7.11. Practical

stu-

dy-

Name

Sam-

ple

Num-

ber Species

Re-

gion

Is-

land Stage

In-

di-

vid-

ual

ID

Clutch

Com-

ple-

tion

Date

Egg

Cul-

men

Length

(mm)

Cul-

men

Depth

(mm)

Flip-

per

Length

(mm)

Body

Mass

(g) Sex

Delta

15

N

(o/oo)

Delta

13 C

(o/oo)

Com-

ments

PAL07085 Adelie

Penguin

(Py-

goscelis

adeliae)

An-

vers

Torg-

ersen

Adult,

1

Egg

Stage

N3A1Yes 2007-

11-

16

36.7 19.3 193 3450 FE-

MALE

8.76651 -

25.32426

NA

PAL07086 Adelie

Penguin

(Py-

goscelis

adeliae)

An-

vers

Torg-

ersen

Adult,

1

Egg

Stage

N3A2Yes 2007-

11-

16

39.3 20.6 190 3650 MALE8.66496 -

25.29805

NA

For this exercise, we’re gonna use the penguins dataset.

7.11.3. Questions

1) Create a github account if not done yet.

2) Configure Rstudio with your github account using the usethis package.

3) Create and Store your GITHUB Personal Authorisation Token

4) Create a new R Markdown project, initialize it for git, and create a new git repository

5) Create a new Rmarkdown document, in your project. Then save the file and stage it.

6) Create a new commit including the new file and push it to github (Check on github that it works).

7) Edit the file. Delete everything after line 12. Add a new section title, simple text and text in bold font. Then knit

and compile.

8) Make a new commit (with a meaningful message), and push to github.

259



Chapter 7. Version control with Git and GitHub

9) Create a new branch, and add a new section to the rmarkdown file in this branch. Whatever you want. I would

suggest a graph of the data.

10) Create a commit and push it to the branch.

11) On github, create a pull request to merge the 2 different branches.

12) Check and accept the pull request to merge the 2 branches.

You have successfully used all the essential tools of git . You are really to explore  and discover its power

Figure 7.57.: Happy git(hub)-ing

7.11.4. Solution

2)

usethis::git_sitrep()

usethis::use_git_config(

user.name = "your_username",

user.email = "your_email@address.com"

)

3)

usethis::create_github_token()

gitcreds::gitcreds_set()

4)

260



7.11. Practical

#create R project

usethis::use_git()

#restart R

usethis::use_github()

usethis::git_vaccinate()

261



Part II.

Fundamentals of stats

262



Chapter 8
Power Analysis

8.1. The theory

8.1.1. What is power?

Power is the probability of rejecting the null hypothesis when it is false

8.1.2. Why do a power analysis?

Assess the strength of evidence

Power analysis, performed after accepting a null hypothesis, can help assess the probability of rejecting the null if it

were false, and if the magnitude of the effect was equal to that observed (or to any other given magnitude). This type

of a posteriori analysis is very common.

Design better experiments

Power analysis, performed prior to conducting an experiment (but most often after a preliminary experiment), can be

used to determine the number of observations required to detect an effect of a given magnitude with some probability

(the power). This type of a priori experiment should be more common.

263



Chapter 8. Power Analysis

Estimate minimum detectable effect

Sampling effort is often predetermined (when you are handed data of an experiment already completed), or extremely

constrained (when logistics dictates what can be done). Whether it is a priori or a posteriori, power analysis can

help you estimate, for a fixed sample size and a given power, what is the minimum effect size that can be detected.

8.1.3. Factors affecting power

For a given statistical test, there are 3 factors that affect power.

Decision criteria

Power is related to 𝛼, the probability level at which one rejects the null hypothesis. If this decision criteria is made

very strict (i.e. if critical 𝛼 is set to a very low value, like 0.1% or 𝑝 = 0.001), then power will be lower than if the

critical 𝛼 was less strict.

Sample size

The larger the sample size, the larger the power. As sample size increases, one’s ability to detect small effect sizes as

being statistically significant gets better.

Effect size

The larger the effect size, the larger the power. For a given sample size, the ability to detect an effect as being

significant is higher for large effects than for small ones. Effect size measures how false the null hypothesis is.

8.1.4. Types of power analyses

First, 𝛼 is define as the probability level at which one rejects the null hypothesis, and 𝛽 is 1 − 𝑝𝑜𝑤𝑒𝑟.

A priori

Computes the sample size required given 𝛽, 𝛼, and the effect size. This type of analysis is useful when planning

experiments.

264



8.1. The theory

Compromise

Computes 𝛼 and 𝛽 for a given 𝛼/𝛽 ratio, sample size, and effect size. Less commonly used (I have never used it

myself) although it can be useful when the 𝛼/𝛽 ratio has meaning, for example when the cost of type I and type II

errors can be quantified.

Criterion

Computes 𝛼 for a given 𝛽, sample size, and effect size. In practice, I see little interest in this. Let me know if you see

something I don’t!

Post-hoc

Computes the power for a given 𝛼, effect size, and sample size. Used frequently to help in the interpretation of a

test that is not statistically significant, but only if an effect size that is biologically significant is used (and not the

observed effect size). Not relevant when the test is significant.

Sensitivity

Computes the detectable effect size for a given 𝛽 ,𝛼, and sample size. Very useful at the planning stage of an

experiment.

8.1.5. How to calculate effect size

The metric for effect size depends on the test. Note that other software packages often use different effect size metrics

and that it is important to use the correct one for each package. G*Power, a software to easily perform power analysis,

has an effect size calculator for many tests that only requires you to enter the relevant values. The following table

lists the effect size metrics used by G*Power for the various tests.

Test Effect size Formula

t-test on

means

d 𝑑 = |𝜇1−𝜇2|
√(𝑠1

2+𝑠2
2)/2

t-test on

correlations

r

265



Chapter 8. Power Analysis

Test Effect size Formula

other t-tests d 𝑑 = 𝜇
𝜎

F-test

(ANOVA)

f 𝑓 =
√∑𝑘

𝑖=1(𝜇𝑖−𝜇)2
𝑘
𝜎

other F-tests 𝑓2 𝑓2 = 𝑅𝑝
2

1−𝑅𝑝
2

𝑅𝑝 is the squared partial correlation coefficient

Chi-square

test

w 𝑤 = √∑𝑚
𝑖=1

(𝑝0𝑖−𝑝1𝑖)2

𝑝0𝑖

𝑝0𝑖 and 𝑝1𝑖 are the proportion in category 𝑖 predicted

by the null, 0, and alternative, 1, hypothesis

8.2. Practical

After completing this laboratory, you should :

• be able to compute the power of a t-test with G*Power and R

• be able to calculate the required sample size to achieve a desired power level with a t-test

• be able to calculate the detectable effect size by a t-test given the sample size, the power and 𝛼

• understand how power changes when sample size increases, the effect size changes, or when 𝛼 decreases

• understand how power is affected when you change from a two-tailed to a one-tailed test.

8.2.1. What is G*Power?

G*Power is free software developed by quantitative psychologists from the University of Dusseldorf in Germany. It

is available in MacOS and Windows versions. It can be run under Linux using Wine or a virtual machine.

G*Power will allow you to do power analyses for the majority of statistical tests we will cover during the term without

making lengthy calculations and looking up long tables and figures of power curves. It is a really useful tool that you

need to master.

It is possible to perform all analysis made by G*Power in R, but it requires a bit more code, and a better understanding

of the process since everything should be coded by hand. In simple cases, R code is also provided.

266



8.2. Practical

Fire Caution

Download the software here and install it on your computer and your workstation (if it is not there already).

8.2.2. How to use G*Power

8.2.2.1. General Principle

Using G*Power generally involves 3 steps:

1. Choosing the appropriate test

2. Choosing one of the 5 types of available power analyses

3. Enter parameter values and press the Calculate button

8.2.3. Power analysis for a t-test on two independent means

Exclamation Important

All the power analysis presented in this chapter can be done using 2 functions in R.

• pwr.t.test() when the two samples have a similar size

• pwr.t2n.test() when samples have different numbers of observations

The objective of this lab is to learn to use G*Power and understand how the 4 parameters of power analyses (𝛼, 𝛽,

sample size and effect size) are related to each other. For this, you will only use the standard t-test to compare two

independent means. This is the test most used by biologists, you have all used it, and it will serve admirably for this

lab. What you will learn today will be applicable to all other power analyses.

Jaynie Stephenson studied the productivity of streams in the Ottawa region. She has measured fish biomass in 36

streams, 18 on the Shield and 18 in the Ottawa Valley. She found that fish biomass was lower in streams from the

valley (2.64 𝑔/𝑚2 , standard deviation = 3.28) than from the Shield (3.31 𝑔/𝑚2 , standard deviation = 2.79.).

When she tested the null hypothesis that fish biomass is the same in the two regions by a t-test, she obtained:

Pooled-Variance Two-Sample t-Test

t = -0.5746, df = 34, p-value = 0.5693

267

https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower.html


Chapter 8. Power Analysis

She therefore accepted the null hypothesis (since p is much larger than 0.05) and concluded that fish biomass is the

same in the two regions.

8.2.4. Post-hoc analysis

Using the observed means and standard deviations, we can use G*Power to calculate the power of the two-tailed

t-test for two independent means, using the observed effect size (the difference between the two means, weighted by

the standard deviations) for 𝛼 = 0.05.

Start G*Power.

1. In *Test family , choose: t tests

2. For Statistical test , choose: Means: Difference between two independent means (two groups)

3. For Type of power analysis , choose: Post hoc: Compute achieved power - given 𝛼, sample size, and effect

size

4. At Input Parameters ,

• in the box Tail(s) , chose: Two,

• check that 𝛼 err prob is equal to 0.05

• Enter 18 for the Sample size of group 1 and of group 2

• then, to calculate effect size (d), click on Determine =>

5. In the window that opens,

• select n1 = n2 , then

• enter the two means (Mean group 1 et 2)

• the two standard deviations(SD group 1 et 2)

• click on Calculate and transfer to main window

6. After you click on the Calculate button in the main window, you should get the following:

Similar analysis can be done in R. You first need to calculate the effect size d for a t-test comparing 2 means, and

then use the pwr.t.test() function from the pwr . The easiest is to create anew function in R to estimate the

effect size dsince we are going to reuse it multiple times during the lab.

268



8.2. Practical

Figure 8.1.: Post-hoc analysis with estimated effect size

269



Chapter 8. Power Analysis

# load package pwr

library(pwr)

# define d for a 2 sample t-test

d <- function(u1, u2, sd1, sd2) {

abs(u1 - u2) / sqrt((sd1^2 + sd2^2) / 2)

}

# power analysis

pwr.t.test(

n = 18,

d = d(u1 = 2.64, sd1 = 3.28, u2 = 3.31, sd2 = 2.79),

sig.level = 0.05,

type = "two.sample"

)

Two-sample t test power calculation

n = 18

d = 0.220042

sig.level = 0.05

power = 0.09833902

alternative = two.sided

NOTE: n is number in *each* group

# plot similar to G*Power

d_cohen <- d(u1 = 2.64, sd1 = 3.28, u2 = 3.31, sd2 = 2.79)

x <- seq(-4, 4, length = 200)

y0 <- dt(x, 34)

y1 <- dt(x, 34, ncp = d_cohen * sqrt(36) / 2)

plot(x, y0, type = "l", col = "red", lwd = 2)

qc <- qt(0.025, 34)

270



8.2. Practical

abline(v = qc, col = "green")

abline(v = -qc, col = "green")

lines(x, y1, type = "l", col = "blue", lwd = 2)

# type 2 error corresponds to the shaded area

polygon(

c(x[x <= -qc], -qc), c(y1[x <= -qc], 0),

col = rgb(red = 0, green = 0.2, blue = 1, alpha = 0.5)

)

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

x

y0

Figure 8.2.: Post-hoc analysis with estimated effect size in R

qc <- qt(0.025, 34)

ncp <- d_cohen * sqrt(36) / 2

dat <- data.frame(

x = seq(-4, 4, length = 200),

y0 = dt(x, (n - 1) * 2),

y1 = dt(x, (n - 1) * 2, ncp = ncp)

) %>%

mutate(

271



Chapter 8. Power Analysis

area = ifelse(x <= qc, y1, 0)

)

ggplot(dat, aes(x = x)) +

geom_line(aes(y = y0), color = "red") +

geom_line(aes(y = y1), color = "blue") +

geom_vline(xintercept = qcl, color = "green") +

geom_area(

aes(x = x, y = area),

fill = rgb(red = 0, green = 0.2, blue = 1, alpha = 0.5)

) +

theme_classic() +

ylab("dt(x)")

Let’s examine the figure Figure 8.2.

• The curve on the left, in red, corresponds to the expected distribution of the t-statistics when 𝐻0 is true (i.e.

when the two means are equal) given the sample size (18 per region) and the observed standard deviations.

• The vertical green lines correspond to the critical values of t for 𝛼 = 0.05 and a total sample size of 36 (2x18).

• The shaded pink regions correspond to the rejection zones for 𝐻0. If Jaynie had obtained a t-value outside the

interval delimited by the critical values ranging from -2.03224 to 2.03224, she would then have rejected 𝐻0 ,

the null hypothesis of equal means. In fact, she obtained a t-value of -0.5746 and concluded that the biomass

is equal in the two regions.

• The curve on the right, in blue, corresponds to the expected distribution of the t-statistics if 𝐻1 is true (here

𝐻1 is that there is a difference in biomass between the two regions equal to 3.33 − 2.64 = 0.69𝑔/𝑚2 , given

the observed standard deviations). This distribution is what we should observe if 𝐻1 was true and we repeated

a large number of times the experiment using random samples of 18 streams in each of the two regions and

calculated a t-statistic for each sample. On average, we would obtain a t-statistic of about 0.6.

• Note that there is considerable overlap of the two distributions and that a large fraction of the surface under the

right curve is within the interval where 𝐻0 is accepted between the two vertical green lines at -2.03224 and

2.03224. This proportion, shaded in blue under the distribution on the right is labeled 𝛽 and corresponds to

the risk of type II error (accept 𝐻0 when 𝐻1 is true).

• Power is simply 1 − 𝛽, and is here 0.098339. Therefore, if the mean biomass differed by 0.69𝑔/𝑚2 between

the two regions, Jaynie had only 9.8% chance of being able to detect it as a statistically significant difference

272



8.2. Practical

at �=5% with a sample size of 18 streams in each region.

Let’s recapitulate: The difference in biomass between regions is not statistically significant according to the t-test. It

is because the difference is relatively small relative to the precision of the measurements. It is therefore not surprising

that that power, i.e. the probability of detecting a statistically significant difference, is small. Therefore, this analysis

is not very informative.

Indeed, a post hoc power analysis using the observed effect size is not useful. It is much more informative to

conduct a post hoc power analysis for an effect size that is different from the observed effect size. But what effect size

to use? It is the biology of the system under study that will guide you. For example, with respect to fish biomass in

streams, one could argue that a two fold change in biomass (say from 2.64 to 5.28 g/m2 ) has ecologically significant

repercussions. We would therefore want to know if Jaynie had a good chance of detecting a difference as large as this

before accepting her conclusion that the biomass is the same in the two regions. So, what were the odds that Jaynie

could detect a difference of 2.64 g/m2 between the two regions? G*Power can tell you if you cajole it the right way.

Fire Exercise

Change the mean of group 2 to 5.28, recalculate effect size, and click on Calculate to obtain figure Figure 8.3.

Same analysis using R (without all the code for the interesting but not really useful plot)

pwr.t.test(

n = 18,

d = d(u1 = 2.64, sd1 = 3.28, u2 = 5.28, sd2 = 2.79),

sig.level = 0.05,

type = "two.sample")

Two-sample t test power calculation

n = 18

d = 0.8670313

sig.level = 0.05

power = 0.7146763

alternative = two.sided

NOTE: n is number in *each* group

273



Chapter 8. Power Analysis

Figure 8.3.: Post-hoc analysis using an effect size different from the one estimated

274



8.2. Practical

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4
x

dt
(x

)

Figure 8.4.

The power is 0.71, therefore Jaynie had a reasonable chance (71%) of detecting a doubling of biomass with 18

streams in each region.

Note that this post hoc power analysis, done for an effect size considered biologically meaningful, is much more

informative than the preceeding one done with the observed effect size (which is what too many students do because

it is the default of so many power calculation programs). Jaynie did not detect a difference between the two regions.

There are two possibilities: 1) there is really no difference between the regions, or 2) the precision of measurements

is so low (because the sample size is small and/or there is large variability within a region) that it is very unlikely to

be able to detect even large differences. The second power analysis can eliminate this second possibility because

Jaynie had 71% chances of detecting a doubling of biomass.

8.2.5. A priori analysis

Suppose that a difference in biomass of 3.31 − 2.64 = 0.67𝑔/𝑚2 can be ecologically significant. The next field

season should be planned so that Jaynie would have a good chance of detecting such a difference in fish biomass

between regions. How many streams should Jaynie sample in each region to have 80% of detecting such a difference

(given the observed variability)?

275



Chapter 8. Power Analysis

Fire Exercise

Change the type of power analysis in G*Power to A priori: Compute sample size - given 𝛼 , power, and

effect size. Ensure that the values for means and standard deviations are those obtained by Jaynie. Recalculate

the effect size metric and enter 0.8 for power and you will obtain Figure 8.5.

Figure 8.5.: A priori analysis

pwr.t.test(

power = 0.8,

d = d(u1 = 2.64, sd1 = 3.28, u2 = 3.31, sd2 = 2.79),

sig.level = 0.05,

type = "two.sample")

276



8.2. Practical

Two-sample t test power calculation

n = 325.1723

d = 0.220042

sig.level = 0.05

power = 0.8

alternative = two.sided

NOTE: n is number in *each* group

Ouch! The required sample would be of 326 streams in each region! It would cost a fortune and require several field

teams otherwise only a few dozen streams could be sampled over the summer and it would be very unlikely that such

a small difference in biomass could be detected. Sampling fewer streams would probably be in vain and could be

considered as a waste of effort and time: why do the work on several dozens of streams if the odds of success are that

low?

If we recalculate for a power of 95%, we find that 538 streams would be required from each region. Increasing power

means more work!

pwr.t.test(

power = 0.95,

d = d(u1 = 2.64, sd1 = 3.28, u2 = 3.31, sd2 = 2.79),

sig.level = 0.05,

type = "two.sample")

Two-sample t test power calculation

n = 537.7286

d = 0.220042

sig.level = 0.05

power = 0.95

alternative = two.sided

277



Chapter 8. Power Analysis

NOTE: n is number in *each* group

8.2.6. Sensitivity analysis - Calculate the detectable effect size

Given the observed variability, a sampling effort of 18 streams per region, and with 𝛼 = 0.05, what effect size could

Jaynie detect with 80% probability 𝛽 = 0.2?

Fire Exercise

Change analysis type in G*Power to Sensitivity: Compute required effect size - given 𝛼 , power, and sample

size and size is 18 in each region.

pwr.t.test(

power = 0.8,

n = 18,

sig.level = 0.05,

type = "two.sample")

Two-sample t test power calculation

n = 18

d = 0.9612854

sig.level = 0.05

power = 0.8

alternative = two.sided

NOTE: n is number in *each* group

The detectable effect size for this sample size, 𝛼 = 0.05 and 𝛽 = 0.2 (or power of 80%) is 0.961296.

Exclamation-Triangle Warning

Attention, this effect size is the metric d and is dependent on sampling variability.

Here, d is approximately equal to

278



8.2. Practical

Figure 8.6.: Analyse de sensitivité

279



Chapter 8. Power Analysis

𝑑 = | ̄𝑋1
̄𝑋2|

√𝑠1
2+𝑠2

2

2

To convert this d value without units into a value for the detectable difference in biomass between the two regions,

you need to multiply d by the denominator of the equation.

| ̄𝑋1 − ̄𝑋2| = 𝑑 ∗ √𝑠1
2 + 𝑠2

2

2

In R this can be done with the following code

pwr.t.test(

power = 0.8,

n = 18,

sig.level = 0.05,

type = "two.sample")$d * sqrt((3.28^2 + 2.79^2) / 2)

[1] 2.926992

Therefore, with 18 streams per region, 𝛼 = 0.05 and 𝛽 = 0.2 (so power of 80%), Jaynie could detect a difference of

2.93 g/m2 between regions, a bit more than a doubling of biomass.

8.3. Important points to remember

• Post hoc power analyses are relevant only when the null hypothesis is accepted because it is impossible to

make a type II error when rejecting 𝐻0 .

• With very large samples, power is very high and minute differences can be statistically detected, even if they

are not biologically significant.

• When using a stricter significance criteria (𝛼 < 0.05) power is reduced.

• Maximizing power implies more sampling effort, unless you use a more liberal statistical criteria (𝛼 > 0.05)

• The choice of 𝛽 is somewhat arbitrary. 𝛽 = 0.2 (power of 80%) is considered relatively high by most.

280



Part III.

Linear models

281



Chapter 9
Correlation and simple linear regression

After completing this laboratory exercise, you should be able to:

• Use R to produce a scatter plot of the relationship between two variables.

• Use R to carry out some simple data transformations.

• Use R to compute the Pearson product-moment correlation between two variables and assess its statistical

significance.

• Use R to compute the correlation between pairs of ranked vari- ables using the Spearman rank correlation and

Kendall’s tau.

• Use R to assess the significance of pairwise comparisons from a generalized correlation matrix using Bonferroni-

adjusted proba- bilities.

• Use R do a simple linear regression

• Use R to test the validity of the assumptions underlying simple lin- ear regression

• Use R to assess significance of a regression by the bootstrap method

• Quantify effect size in simple regression and perform a power analysis using G*Power

9.1. R packages and data

For this la b you need:

• R packages:

– car

– lmtest

– boot

282



9.2. Scatter plots

– pwr

– ggplot

– performance

• data:

– sturgeon.csv

You need to load the packages in R with library() and if need needed install them first with install.packages()

For the data, load them using the read.csv() function.

library(car)

library(lmtest)

library(performance)

library(boot)

library(ggplot2)

library(pwr)

sturgeon <- read.csv("data/sturgeon.csv")

INFO Note

Note that the command to read the data assumes that the data file is in a folder named data within the working

directory. Adjust as needed.

9.2. Scatter plots

Correlation and regression analysis should always begin with an examination of the data: this is a critical first step in

determining whether such analyses are even appropriate for your data. Suppose we are interested in the extent to

which length of male sturgeon in the vicinity of The Pas and Cumberland House covaries with weight. To address this

question, we look at the correlation between fklngth and rdwght. Recall that one of the assumptions in correlation

analysis is that the relationship between the two variables is linear. To evaluate this assumption, a good first step is to

produce a scatterplot.

• Load the data from sturgeon.csv in an obk=jcet named sturgeon. Make a scatter plot of rdwght vs

fklngth fit with a locally weighted regression (Loess) smoother, and a linear regression line.

283



Chapter 9. Correlation and simple linear regression

sturgeon <- read.csv("data/sturgeon.csv")

str(sturgeon)

'data.frame': 186 obs. of 9 variables:

$ fklngth : num 37 50.2 28.9 50.2 45.6 ...

$ totlngth: num 40.7 54.1 31.3 53.1 49.5 ...

$ drlngth : num 23.6 31.5 17.3 32.3 32.1 ...

$ rdwght : num 15.95 NA 6.49 NA 29.92 ...

$ age : int 11 24 7 23 20 23 20 7 23 19 ...

$ girth : num 40.5 53.5 31 52.5 50 54.2 48 28.5 44 39 ...

$ sex : chr "MALE" "FEMALE" "MALE" "FEMALE" ...

$ location: chr "THE_PAS" "THE_PAS" "THE_PAS" "THE_PAS" ...

$ year : int 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 ...

mygraph <- ggplot(

data = sturgeon[!is.na(sturgeon$rdwght), ], # source of data

aes(x = fklngth, y = rdwght)

)

# plot data points, regression, loess trace

mygraph <- mygraph +

geom_smooth(method = lm, se = FALSE, color = "green") + # add linear regression, but no SE shading

geom_smooth(color = "red", se = FALSE) + # add loess

geom_point() # add data points

mygraph # display graph

284



9.2. Scatter plots

0

25

50

75

30 40 50 60
fklngth

rd
w

gh
t

Figure 9.1.: Scatter plot of Weight as a function of length in sturgeons

• Does this curve suggest a good correlation between the two? Based on visual inspection, does the relationship

between these two variables appear linear?

There is some evidence of nonlinearity, as the curve appears to have a positive second derivative (concave up). This

notwithstanding, it does appear the two variables are highly correlated.

• Redo the scatterplot, but after logtransformation of both axes.

# apply log transformation on defined graph

mygraph + scale_x_log10() + scale_y_log10()

285



Chapter 9. Correlation and simple linear regression

10

30

100

30 50 70
fklngth

rd
w

gh
t

Figure 9.2.: Plot weight-length in sturgeon using a log scale

Compare the diagrams before and after the transformation (Figs Figure 9.1 and Figure 9.2). Since the relationship is

more linear after transformation, correlation analysis should be done on the transformed data

9.3. Data transformations and the product-moment correlation

Recall that another assumption underlying significance testing of the product-moment correlation is that the distri-

bution of the two variables in question is bivariate normal. We can test to see whether each of the two variables

are normally distributed using the same procedures outlined in the exercise on two-sample comparisons. If the two

variables are each normally distributed, then one is usually (relatively) safe in assuming the joint distribution is

normal, although this needn’t necessarily be true.

• Examine the distribution of the 4 variables (the two original variables and the log-transformed variables).

What do you conclude from visual inspection of these plots?

The following graph contains the 4 QQ plots (qqplot()). It was produced by the code below that starts with the

par() command to ensure that all 4 plots would appear together on the same page in 2 rows and 2 columns:

par(mfrow = c(2, 2)) # split graph in 4 (2 rows, 2 cols) filling by rows

qqnorm(sturgeon$fklngth, ylab = "fklngth")

286



9.3. Data transformations and the product-moment correlation

qqline(sturgeon$fklngth)

qqnorm(log10(sturgeon$fklngth), ylab = "log10(fklngth)")

qqline(log10(sturgeon$fklngth))

qqnorm(sturgeon$rdwght, ylab = "rdwght")

qqline(sturgeon$rdwght)

qqnorm(log10(sturgeon$rdwght), ylab = "log10(rdwgth)")

qqline(log10(sturgeon$rdwght))

par(mfrow = c(1, 1)) # redefine plotting area to 1 plot

−3 −2 −1 0 1 2 3

30

Normal Q−Q Plot

Theoretical Quantiles

fk
ln

gt
h

−3 −2 −1 0 1 2 3
1.

4

Normal Q−Q Plot

Theoretical Quantiles

lo
g1

0(
fk

ln
gt

h)

−2 −1 0 1 2

20

Normal Q−Q Plot

Theoretical Quantiles

rd
w

gh
t

−2 −1 0 1 2

0.
8

Normal Q−Q Plot

Theoretical Quantiles

lo
g1

0(
rd

w
gt

h)

Figure 9.3.

None of these distributions are perfectly normal, but deviations are mostly minor.

• To generate a scatterplot matrix of all pairs of variables, with linear regression and lowess traces, you can use

scatterplotMatrix from car .

scatterplotMatrix(

~ fklngth + log10(fklngth) + rdwght + log10(rdwght),

data = sturgeon,

smooth = TRUE, diagonal = "density"

)

287



Chapter 9. Correlation and simple linear regression

fklngth

1.
4

1.
7

30 40 50 60

0.
8

1.
6

1.4 1.6 1.8

log10.fklngth.

rdwght

20 60

0.8 1.2 1.6 2.0

30
60

20
80

log10.rdwght.

Figure 9.4.

• Next, calculate the Pearson product-moment correlation between each pair (untransformed and log transformed)

using the cor() command. However, to do this, it will be easier if you first add your transformed data as

columns in the sturgeon data frame.

sturgeon$lfklngth <- with(sturgeon, log10(fklngth))

sturgeon$lrdwght <- log10(sturgeon$rdwght)

Then you can get the correlation matrix by:

cor(sturgeon[, c("fklngth", "lfklngth", "lrdwght", "rdwght")], use = "complete.obs")

Note the use="complete.obs" parameter. It tells R to keep only lines of the data frame where all variables were

measured. If there are missing data, some lines will be removed, but correlations will be calculated for the same

subset of cases for all pairs of variables. One could use, instead, use="pairwise.complete.obs" , to tell R to

only eliminate observations when values are missing for this particular pair of variables. In this situation, if there are

missing values in the data frame, the sample size for pairwise correlations will vary. In general, I recommend you

use the option use="complete.obs", unless you have so many missing values that it eliminates the majority of

your data.

• Why is the correlation between the untransformed variables smaller than between the transformed variables?

288



9.4. Testing the significance of correlations and Bonferroni probabilities

cor(sturgeon[, c("fklngth", "lfklngth", "lrdwght", "rdwght")], use = "complete.obs")

fklngth lfklngth lrdwght rdwght

fklngth 1.0000000 0.9921435 0.9645108 0.9175435

lfklngth 0.9921435 1.0000000 0.9670139 0.8756203

lrdwght 0.9645108 0.9670139 1.0000000 0.9265513

rdwght 0.9175435 0.8756203 0.9265513 1.0000000

Several things should be noted here.

1. the correlation between fork length and round weight is high, regardless of which variables are used: so as

might be expected, heavier fish are also longer, and vice versa

2. the correlation is greater for the transformed variables than the untransformed variables.

Why? Because the correlation coefficient is inversely proportional to the amount of scatter around a straight line. If

the relationship is curvilinear (as it is for the untransformed data), the scatter around a straight line will be greater

than if the relationship is linear. Hence, the correlation coefficient will be smaller.

9.4. Testing the significance of correlations and Bonferroni probabilities

It’s possible to test the significance of individual correlations using the commands window. As an example, let’s try

testing the significance of the correlation between lfklngth and rdwght (the smallest correlation in the above table).

• In the R script window, enter the following to test the correlation between lfkgnth and rdwght :

cor.test(

sturgeon$lfklngth, sturgeon$rdwght,

alternative = "two.sided",

method = "pearson"

)

Pearson's product-moment correlation

data: sturgeon$lfklngth and sturgeon$rdwght

289



Chapter 9. Correlation and simple linear regression

t = 24.322, df = 180, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.8367345 0.9057199

sample estimates:

cor

0.8756203

We see here that the correlation is highly significant (𝑝 < 2.2𝑒 − 16), which is no surprise given how high the

correlation coefficient is (0.8756).

It’s important to bear in mind that when you are estimating correlations, the probability of finding any one correlation

that is “significant” by pure chance increases with the number of pairwise correlations examined. Suppose, for

example, that you have five variables; there are then a total of 10 possible pairwise correlations, and from this set,

you would probably not be surprised to find at least one that is “significant” purely by chance. One way of avoiding

the problem is to adjust individual 𝛼 levels for pairwise correlations by dividing by the number of comparisons, k,

such that: 𝛼′ = 𝛼
𝑘 (Bonferroni probabilities), i.e. if initially, 𝛼 = 0.05 and there are a total of 10 comparisons, then

𝛼′ = 0.005.

In the above example where we examined correlations between fklngth and rdwght and their log, it would be

appropriate to adjust the 𝛼 at which significance is tested by the total number of correlations in the matrix (in this

case, 6, so 𝛼′ = 0.0083). Does your decision about the significance of the correlation between lfklngth and

rdwght change?

9.5. Non-parametric correlations: Spearman’s rank and Kendall’s 𝜏

The analysis done with the sturgeon data in the section above suggests that one of the assumptions of correlation,

namely, bivariate normality, may not be valid for fklngth and rdwght nor for the log transforms of these variables.

Finding an appropriate transformation is sometimes like looking for a needle in a haystack; indeed, it can be much

worse simply because for some distributions, there is no transformation that will normalize the data. In such cases,

the best option may be to go to a non-parametric analysis that does not assume bivariate normality or linearity. All

such correlations are based on the ranks rather than the data themselves: two options available in R are Spearman

and Kendall’s 𝜏 (tau).

290



9.5. Non-parametric correlations: Spearman’s rank and Kendall’s 𝜏

• Test the correlation between fklngth and rdwght using both the Spearman and Kendall’s tau. The following

commands will produce the correlations:

cor.test(

sturgeon$lfklngth, sturgeon$rdwght,

alternative = "two.sided",

method = "spearman"

)

Spearman's rank correlation rho

data: sturgeon$lfklngth and sturgeon$rdwght

S = 47971, p-value < 2.2e-16

alternative hypothesis: true rho is not equal to 0

sample estimates:

rho

0.9522546

cor.test(

sturgeon$lfklngth, sturgeon$rdwght,

alternative = "two.sided",

method = "kendall"

)

Kendall's rank correlation tau

data: sturgeon$lfklngth and sturgeon$rdwght

z = 16.358, p-value < 2.2e-16

alternative hypothesis: true tau is not equal to 0

sample estimates:

tau

0.8208065

291



Chapter 9. Correlation and simple linear regression

Contrast these results with those obtained using the Pearson product-moment correlation. Why the difference?

Test the non-parametric correlations on pairs of the transformed variables. You should immediately note that the

non-parametric correlations are identical for untransformed and transformed variables. This is because we are using

the ranks, rather than the raw data, and the rank ordering of the data does not change when a transformation is applied

to the raw values.

Note that the correlations for Kendall’s tau (0.820) are lower than for the Spearman rank (0.952) correlation. This

is because Kendall’s gives more weight to ranks that are far apart, whereas Spearman’s weights each rank equally.

Generally, Kendalls’s is more appropriate when there is more uncertainty about the reliability of close ranks.

The sturgeons in this sample were collected using nets and baited hooks of a certain size. What impact do you think

this method of collection had on the shapes of the distributions of fklngth and rdwght ? Under these circumstances,

do you think correlation analysis is appropriate at all?

Note that correlation analysis assumes that each variable is randomly sampled. In the case of sturgeon, this is not

the case: baited hooks and nets will only catch sturgeon above a certain minimum size. Note that in the sample,

there are no small sturgeons, since the fishing gear targets only larger fish. Thus, we should be very wary of the

correlation coefficients associated with our analysis, as the inclusion of smaller fish may well change our estimate of

these correlations.

9.6. Simple linear regression

In correlation analysis we are interested in how pairs of variables covary: However, in regression analysis, we

are attempting to estimate a model that predicts a variable (the dependent variable) from another variable (the

independent variable).

As with any statistical analysis, the best way to begin is by looking at your data. If you are interested in the relationship

between two variables, say, Y and X, produce a plot of Y versus X just to get a “feel” for the relationship.

• The data file sturgeon.csv contains data for sturgeons collected from 1978-1980 at Cumberland House,

Saskatchewan and The Pas, Manitoba. Make a scatterplot of fklngth (the dependent variable) versus age

(the independent variable) for males and add a linear regression and a loess smoother. What do you conclude

from this plot?

292



9.6. Simple linear regression

sturgeon.male <- subset(sturgeon, subset = sex == "MALE")

mygraph <- ggplot(

data = sturgeon.male, # source of data

aes(x = age, y = fklngth)

) # aesthetics: y=fklngth, x=rdwght

# plot data points, regression, loess trace

mygraph <- mygraph +

geom_smooth(method = lm, se = FALSE, color = "green") + # add linear regression, but no SE shading

geom_smooth(color = "red") + # add loess

geom_point() # add data points

mygraph # display graph

30

40

50

60

10 20 30 40
age

fk
ln

gt
h

Figure 9.5.

This suggests that the relationship between age and fork length is not linear.

Suppose that we want to know the growth rate of male sturgeon. One estimate (perhaps not a very good one) of the

growth rate is given by the slope of the fork length - age regression.

First, let’s run the regression with the lm() command, and save its results in an object called RegModel.1.

293



Chapter 9. Correlation and simple linear regression

RegModel.1 <- lm(fklngth ~ age, data = sturgeon.male)

Nothing appears on the screen, but don’t worry, it all got saved in memory. To see the statistical results, type:

summary(RegModel.1)

Call:

lm(formula = fklngth ~ age, data = sturgeon.male)

Residuals:

Min 1Q Median 3Q Max

-8.4936 -2.2263 0.1849 1.7526 10.8234

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 28.50359 1.16873 24.39 <2e-16 ***

age 0.70724 0.05888 12.01 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.307 on 73 degrees of freedom

(5 observations deleted due to missingness)

Multiple R-squared: 0.664, Adjusted R-squared: 0.6594

F-statistic: 144.3 on 1 and 73 DF, p-value: < 2.2e-16

R output gives you:

1. Call: A friendly reminder of the model fitted and the data used.

2. Residuals: General statistics about the residuals around the fitted model.

3. Coefficients: Fitted model parameter estimates, standard errors, t values and associated probabilities.

4. Residual standard error: Square root of the residual variance.

5. Multiple R-squared: Coefficient of determination. It corresponds to the proportion of the total variance

of the dependent variable that is accounted for by the regression (i.e. by the independent variable)

294



9.6. Simple linear regression

6. Adjusted R-squared: The adjusted R-squared accounts for the number of parameters in the model. If you

want to compare the performance of several models with different numbers of parameters, this is the one to use

7. F-statistic: This is the test of the overall significance of the model. In the simple regression case, this is

the same as the test of the slope of the regression.

The estimated regression equation is therefore:

𝐹𝑘𝑙𝑛𝑔𝑡ℎ = 28.50359 + 0.70724 ∗ 𝑎𝑔𝑒

Given the highly significant F-value of the model (or equivalently the highly significant t-value for the slope of the

line), we reject the null hypothesis that there is no relationship between fork length and age.

9.6.1. Testing regression assumptions

Simple model I regression makes four assumptions:

1. the X variable is measured without error;

2. the relationship between Y and X is linear;

3. that for any value of X, the Y’s are independently and normally distributed;

4. the variance of Y for fixed X is independent of X.

Having done the regression, we can now test the assumptions. For most biological data, the first assumption is

almost never valid; usually there is error in both Y and X. This means that in general, slope estimates are biased, but

predicted values are unbiased. However, so long as the error in X is small relative to the range of X in your data, the

fact that X has an associated error is not likely to influence the outcome dramatically. On the other hand, if there is

substantial error in X, regression results based on a model I regression may give poor estimates of the functional

relationship between Y and X. In this case, more sophisticated regression procedures must be employed which are,

unfortunately, beyond the scope of this course.

The other assumptions of a model I regression can, however, be tested, or at least evaluated visually. The plot()

command can display diagnostics for linear models.

par(mfrow = c(2, 2), las = 1)

plot(RegModel.1)

295



Chapter 9. Correlation and simple linear regression

The par() command is used here to tell R to display 2 rows and 2 columns of graphs per page (there are 4 diagnostic

graphs for linear models generated automatically), and the last statement is to tell R to rotate the labels of the Y axis

so that they are perpendicular to the Y axis. (Yes, I know, this is not at all obvious.)

You will get:

35 40 45 50 55 60

−10
5

Fitted values

R
es

id
ua

ls Residuals vs Fitted
24

8

112

−2 −1 0 1 2

−2
2

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals
24

8 124

35 40 45 50 55 60

0.0
1.5

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
248 124

0.00 0.10 0.20

−3
2

LeverageS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance 1
0.5

Residuals vs Leverage

124 718

Figure 9.6.

1. Upper left tell you about linearity, normality, and homoscedasticity of the residuals. It shows the deviations

around the regression vs the predicted values. Remember that the scatterplot ( fklngth vs age ) suggested

that the relationship between fork length and age is not linear. Very young and very old sturgeons tended

to fall under the line, and fish of average age tended to be a bit above the line. This is exactly what the

residual vs fitted plot shows. The red line is a lowess trace through these data. If the relationship was linear, it

would be approximately flat and close to 0. The scatter of residuals tells you a bit about their normality and

homoscedasticity, although this graph is not the best way to look at these properties. The next two are better.

2. Upper right is to assess the normality of the residuals. It is a QQ plot of the residuals . If the residuals were

normally distributed, they would fall very close to the diagonal line. Here, we see it is mostly the case, except

in the tails

3. Bottom left titled Scale-Location, helps with assessing homoscedasticity. It plots the square root of the

absolute value of the standardized residual (residual divided by the standard error of the residuals, this scales

the residuals so that their variance is 1 ) as a function of the fitted value. This graph can help you visualize

whether the spread of the residuals is constant or not. If residuals are homoscedastic, then the average will not

296



9.6. Simple linear regression

change with increasing fitted values. Here, there is slight variability, but it is not monotonous (i.e. it does not

increase or decrease systematically) and there is no strong evidence against the assumption of homoscedasticity.

4. Bottom right plots the residuals as a function of leverage and can help detecting the presence of outliers

or points that have a very strong influence on the regression results. The leverage of a point measures how

far it is from the other points, but only with respect to the independent variable. In the case of simple linear

regression, it is a function of the difference between the observation and the mean of the independent variable.

You should look more closely at any observation with a leverage value that is greater than: 2(𝑘 + 1)/𝑛, where

$𝑘 is the number of independent variables (here 1), and 𝑛 is the number of observations. In this case there is 1

independent variable, 75 observations, and points with a leverage higher than 0.053 may warrant particular

scrutiny. The plot also gives you information about how the removal of a point from the data set would change

the predictions. This is measured by the Cook’s distance, illustrated by the red lines on the plot. A data point

with a Cook distance larger than 1 has a large influence.

Exclamation-Triangle Warning

Note that R automatically labels the most extreme cases on each of these 4 plots. It does not mean that these

cases are outliers, or that you necessarily need be concerned with them. In any data set, there will always be a

minimum and a maximum residual.

The R package performance offers a new and updated version of those graphs with colours and more plots to help

visually assess the assumptions with the function model_check()

check_model(RegModel.1)

297



Chapter 9. Correlation and simple linear regression

0.0000.0250.0500.075
30 40 50 60 70

fklngth
D

en
si

ty

Observed data Model−predicted data

Model−predicted lines should resemble observed data line
Posterior Predictive Check

−10−50510

40 50 60
Fitted values

R
es

id
ua

lsReference line should be flat and horizontal
Linearity

0.51.01.52.0

40 50 60
Fitted values|S

td
. r

es
id

ua
ls

|

Reference line should be flat and horizontal
Homogeneity of Variance

59 37
4

19 20

0.5

0.5−505
0.00 0.05 0.10 0.15 0.20

Leverage (hii)S
td

. R
es

id
ua

ls

Points should be inside the contour lines
Influential Observations

−202
−2 −1 0 1 2

Standard Normal Distribution Quantiles

S
am

pl
e 

Q
ua

nt
ile

 D
ev

ia
tio

ns

Dots should fall along the line
Normality of Residuals

Figure 9.7.

So, what is the verdict about the linear regression between fklngth and age ? It fails the linearity, possibly fails the

normality, passes homoscedasticity, and this does not seem to be too strongly affected by some bizarre points.

9.6.2. Formal tests of regression assumptions

In my practice, I seldom use formal tests of regression assumptions and mostly rely on graphs of the residuals to

guide my decisions. To my knowledge, this is what most biologists and data analysts do. However, in my early

analyst life I was not always confident that I was interpreting these graphs correctly and wished that I had a formal

test or a statistic quantifying the degree of deviation from the regression assumptions.

The lmtest R package, not part of the base R installation, but available from CRAN, contains a number of tests for

linearity and homoscedasticity. And one can test for normality using the Shapiro-Wilk test seen previously.

First, you need to load (and maybe install) the lmtest package.

library(lmtest)

Fire Exercise

Run the following commands

298



9.6. Simple linear regression

bptest(RegModel.1)

studentized Breusch-Pagan test

data: RegModel.1

BP = 1.1765, df = 1, p-value = 0.2781

The Breusch-Pagan test examines whether the variability of the residuals is constant with respect to increasing fitted

values. A low p value is indicative of heteroscedasticity. Here, the p value is high, and supports my visual assessment

that the homoscedasticity assumption is met by these data.

dwtest(RegModel.1)

Durbin-Watson test

data: RegModel.1

DW = 2.242, p-value = 0.8489

alternative hypothesis: true autocorrelation is greater than 0

The Durbin-Watson test can detect serial autocorrelation in the residuals. Under the assumption of no autocorrelation,

the D statistic is 2. This test can detect violation of independence of observations (residuals), although it is not

foolproof. Here there is no problem identified.

resettest(RegModel.1)

RESET test

data: RegModel.1

RESET = 14.544, df1 = 2, df2 = 71, p-value = 5.082e-06

299



Chapter 9. Correlation and simple linear regression

The RESET test is a test of the assumption of linearity. If the linearity assumption is met, the RESET statistic will be

close to 1. Here, the statistic is much larger (14.54), and very highly significant. This confirms our visual assessment

that the relationship is not linear.

shapiro.test(residuals(RegModel.1))

Shapiro-Wilk normality test

data: residuals(RegModel.1)

W = 0.98037, p-value = 0.2961

The Shapiro-Wilk normality test on the residual confirms that the deviation from normality of the residuals is not

large.

9.7. Data transformations in regression

The analysis above revealed that the linearity assumption underlying regression analysis is not met by the fklngth -

age data. If we want to use regression analysis, data transformations are required:

Let’s plot the log-transformed data

par(mfrow = c(1, 1), las = 1)

ggplot(

data = sturgeon.male,

aes(x = log10(age), y = log10(fklngth))

) +

geom_smooth(color = "red") +

geom_smooth(method = "lm", se = FALSE, color = "green") +

geom_point()

300



9.7. Data transformations in regression

1.4

1.5

1.6

1.7

1.00 1.25 1.50
log10(age)

lo
g1

0(
fk

ln
gt

h)

Figure 9.8.

We can fit the linear regression model on the log-transformed variables.

RegModel.2 <- lm(log10(fklngth) ~ log10(age), data = sturgeon.male)

summary(RegModel.2)

Call:

lm(formula = log10(fklngth) ~ log10(age), data = sturgeon.male)

Residuals:

Min 1Q Median 3Q Max

-0.082794 -0.016837 -0.000719 0.021102 0.087446

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.19199 0.02723 43.77 <2e-16 ***

log10(age) 0.34086 0.02168 15.72 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

301



Chapter 9. Correlation and simple linear regression

Residual standard error: 0.03015 on 73 degrees of freedom

(5 observations deleted due to missingness)

Multiple R-squared: 0.772, Adjusted R-squared: 0.7688

F-statistic: 247.1 on 1 and 73 DF, p-value: < 2.2e-16

Note that by using the log transformed data, the proportion of variation explained by the regression has increased by

10% (from 0.664 to 0.772), a substantial increase. So the relationship has become more linear. Good. Let’s look at

the residual diagnostic plots:

par(mfrow = c(2, 2), las = 1)

plot(RegModel.2)

check_model(RegModel.2)

1.50 1.60 1.70

−0.10
0.05

Fitted values

R
es

id
ua

ls Residuals vs Fitted
24

8

112

−2 −1 0 1 2

−3
1

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals
24

8

112

1.50 1.60 1.70

0.0
1.5

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
248 112

0.00 0.04 0.08

−3
2

LeverageS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance
0.5

0.5
Residuals vs Leverage

825 124

Figure 9.9.

302



9.7. Data transformations in regression

0.0000.0250.0500.075
30 40 50 60

log10(fklngth)
D

en
si

ty

Observed data Model−predicted data

Model−predicted lines should resemble observed data line
Posterior Predictive Check

−0.050.000.05
1.5 1.6 1.7

Fitted values

R
es

id
ua

lsReference line should be flat and horizontal
Linearity

0.51.01.5
1.5 1.6 1.7

Fitted values|S
td

. r
es

id
ua

ls
|

Reference line should be flat and horizontal
Homogeneity of Variance

4
20

591953

0.5

0.5
−505

0.000 0.025 0.050 0.075 0.100

Leverage (hii)S
td

. R
es

id
ua

ls

Points should be inside the contour lines
Influential Observations

−202
−2 −1 0 1 2

Standard Normal Distribution Quantiles

S
am

pl
e 

Q
ua

nt
ile

 D
ev

ia
tio

ns

Dots should fall along the line
Normality of Residuals

Figure 9.10.

So things appear a little better than before, although still not ideal. For example, the Residual vs fitted plot still

suggests a potential nonlinearity. The QQ plot is nicer than before, indicating that residuals are more normally

distributed after the log-log transformation. There is no indication of heteroscedasticity. And, although there are still

a few points with somewhat high leverage, none have a Cook’s distance above 0.5. It thus seems that transforming

data improved things: more linear, more normal, less dependence on extreme data. Do the formal tests support this

visual assessment?

bptest(RegModel.2)

studentized Breusch-Pagan test

data: RegModel.2

BP = 0.14282, df = 1, p-value = 0.7055

dwtest(RegModel.2)

Durbin-Watson test

303



Chapter 9. Correlation and simple linear regression

data: RegModel.2

DW = 2.1777, p-value = 0.6134

alternative hypothesis: true autocorrelation is greater than 0

resettest(RegModel.2)

RESET test

data: RegModel.2

RESET = 4.4413, df1 = 2, df2 = 71, p-value = 0.01523

shapiro.test(residuals(RegModel.2))

Shapiro-Wilk normality test

data: residuals(RegModel.2)

W = 0.98998, p-value = 0.8246

Indeed, they do: residuals are still homoscedastic (Breusch-Pagan test), show no autocorrelation (Durbin-Watson

test), are normal (Shapiro-Wilk test), and they are more linear (p value of the RESET test is now 0.015, instead of

0.000005). Linearity has improved, but is still violated somewhat.

9.8. Dealing with outliers

In this case, there are no real clear outliers. Yes, observations 8, 24, and 112 are labeled as the most extreme in the

last set of residual diagnostic plots. But they are still within what I consider the “reasonable” range. But how does

one define a limit to the reasonable? When is an extreme value a real outlier we have to deal with? Opinions vary

about the issue, but I favor conservatism.

My rule is that, unless the value is clearly impossible or an error in data entry, I do not delete “outliers”; rather, I

analyze all my data. Why? Because, I want my data to reflect natural or real variability. Indeed, variability is often

what interests biologists the most.

304



9.8. Dealing with outliers

Keeping extreme values is the fairest way to proceed, but it often creates other issues. These values will often be

the main reason why the data fail to meet the assumptions of the statistical analysis. One solution is to run the

analysis with and without the outliers, and compare the results. In many cases, the two analyses will be qualitatively

similar: the same conclusions will be reached, and the effect size will not be very different. Sometimes, however,

this comparison will reveal that the presence of the outliers changes the story. The logical conclusion then is that

the results depend on the outliers and that the data at hand are not very conclusive. As an example, let’s rerun the

analysis after eliminating observations labeled 8, 24, and 112.

RegModel.3 <- lm(log10(fklngth) ~ log10(age), data = sturgeon.male, subset = !(rownames(sturgeon.male) %in% c("8", "24", "112")))

summary(RegModel.3)

Call:

lm(formula = log10(fklngth) ~ log10(age), data = sturgeon.male,

subset = !(rownames(sturgeon.male) %in% c("8", "24", "112")))

Residuals:

Min 1Q Median 3Q Max

-0.069163 -0.017390 0.000986 0.018590 0.047647

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.22676 0.02431 50.46 <2e-16 ***

log10(age) 0.31219 0.01932 16.16 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.02554 on 70 degrees of freedom

(5 observations deleted due to missingness)

Multiple R-squared: 0.7885, Adjusted R-squared: 0.7855

F-statistic: 261 on 1 and 70 DF, p-value: < 2.2e-16

The intercept, slope, and R squared are about the same, and the significance of the slope is still astronomical.

Removing the “outliers” has little effect in this case.

305



Chapter 9. Correlation and simple linear regression

As for the diagnostic residual plots and the formal tests of assumptions:

par(mfrow = c(2, 2))

plot(RegModel.3)

bptest(RegModel.3)

studentized Breusch-Pagan test

data: RegModel.3

BP = 0.3001, df = 1, p-value = 0.5838

dwtest(RegModel.3)

Durbin-Watson test

data: RegModel.3

DW = 2.0171, p-value = 0.5074

alternative hypothesis: true autocorrelation is greater than 0

resettest(RegModel.3)

RESET test

data: RegModel.3

RESET = 3.407, df1 = 2, df2 = 68, p-value = 0.0389

shapiro.test(residuals(RegModel.3))

Shapiro-Wilk normality test

306



9.9. Quantifying effect size in regression and power analysis

data: residuals(RegModel.3)

W = 0.98318, p-value = 0.4502

1.50 1.60 1.70

−
0.

08

Fitted values

R
es

id
ua

ls Residuals vs Fitted

25

16

104

−2 −1 0 1 2

−
2

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals

25

16

104

1.50 1.60 1.70

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
25 16104

0.00 0.04 0.08
−

3

LeverageS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance
0.5

Residuals vs Leverage

25 124 3

Figure 9.11.

No real difference either. Overall, this suggests that the most extreme values do not have undue influence on the

results.

9.9. Quantifying effect size in regression and power analysis

Biological interpretation differs from statistical interpretation. Statistically, we conclude that size increase with age

(i.e. the slope is positive and different from 0). But this conclusion alone does not tell if the difference between

young and old fish is large. The slope and the scatterplot are more informative than the p-value here. The slope (in

log-log space) is 0.34. This means that for each unit increase of X (log10(age)), there is an increase of 0.34 units

of log10(fklngth). In other words, when age is multiplied by 10, fork length is multiplied by about 2 (10^0.34^).

Humm, length increases more slowly than age. This slope value (0.34) is an estimate of raw effect size. It measure

how much length changes with age.

It would also be important to estimate the confidence interval around the estimate of the slope. This can beobtained

using the confint() function.

307



Chapter 9. Correlation and simple linear regression

confint(RegModel.2)

2.5 % 97.5 %

(Intercept) 1.1377151 1.246270

log10(age) 0.2976433 0.384068

The 95% confidence interval for the slope is 0.29-0.38. It is quite narrow and include only values far from zero.

9.9.1. Power to detect a given slope

You can compute power with G*Power for some slope value that you deem of sufficient magnitude to warrant

detection.

1. Go to t Tests: Linear bivariate regression: One group, size of slope.

2. Select Post hoc: Compute achieved power- given 𝛼, sample size,and effect size

For example, suppose that sturgeon biologists deem that a slope of 0.1 for the relationship between log10(fklngth)

and log10(age) is meaningful and you wanted to estimate the power to detect such a slope with a sample of 20

sturgeons. Results from the log-log regression contain most of what you need:

summary(RegModel.2)

Call:

lm(formula = log10(fklngth) ~ log10(age), data = sturgeon.male)

Residuals:

Min 1Q Median 3Q Max

-0.082794 -0.016837 -0.000719 0.021102 0.087446

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.19199 0.02723 43.77 <2e-16 ***

log10(age) 0.34086 0.02168 15.72 <2e-16 ***

---

308



9.9. Quantifying effect size in regression and power analysis

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.03015 on 73 degrees of freedom

(5 observations deleted due to missingness)

Multiple R-squared: 0.772, Adjusted R-squared: 0.7688

F-statistic: 247.1 on 1 and 73 DF, p-value: < 2.2e-16

Note the Residual standard error value (0.03015). You will need this. The other thing you need is an estimate of the

standard deviation of log10(age). R can (of course) compute it. Be careful, the sd() function will return NA if

there are missing values. You can get around this by adding na.rm=TRUE as an argument ot the sd() function.

sd(log10(sturgeon.male$age), na.rm = TRUE)

[1] 0.1616675

You can then enter these values (slope to be detected, sample size, alpha, standard deviation of the independent

variable) to calculate another quantity that G*Power needs (standard deviation of y) using the Determine panel.

Finally you can calculate Power. The filled panels should look like this

INFO Note

Note: The SD of y can’t just be taken from the data because if the slope chanages (e.g. H1) then this will change

the SD of y. SD y needs to be estimated from the observed scatter around the line and the hypothesized slope.

Power to detect a significant slope, if the slope is 0.1, variability of data points around the regression is like in our

sample, for a sample of 20 sturgeons, with 𝛼 = 0.05 is 0.621. Only about 2/3 of samples of that size would detect a

significant effect of age on fklngth.

In R, you can do the analysis also but we will use another trick to work with the pwr.t.test() function. First we,

need to estimate the effect size d. IN this case d is estimated as:

𝑑 = 𝑏
𝑠𝑏

√
𝑛 − 𝑘 − 1

where 𝑏 is the slope, 𝑠𝑏 is the standard error on the slope, 𝑛 is the number of observations and 𝑘 is the number of

independent variables (1 for simple liner regression).

309



Chapter 9. Correlation and simple linear regression

Figure 9.12.: Power analysis for age-length in sturgeon with N = 20 and slope = 0.1

310



9.9. Quantifying effect size in regression and power analysis

SE of the slope is 0.02168. The model was fitted using 75 fishes (n=75). We can then estimate d.

𝑑 = 𝑏
𝑠𝑏

√
𝑛 − 𝑘 − 1

= 0.1
0.02168

√
74 − 1 − 1

= 0.54

We can simply use the pwr.t.test() function to estimate the power.

library(pwr)

# analyse de puissance

pwr.t.test(n = 20, d = 0.54, sig.level = 0.05, type = "one.sample")

One-sample t test power calculation

n = 20

d = 0.54

sig.level = 0.05

power = 0.6299804

alternative = two.sided

You can see that the results is really similar but not exactly the same than with G*power which is normal since we

did not use the exact same formula to estimate power.

9.9.2. Sample size required to achieve desired power

To estimate the sample size required to achieve 99% power to detect a slope of 0.1 (in log-log space), with alpha=0.05,

you simply change the type of analysis:

In R you can simply do:

library(pwr)

# analyse de puissance

pwr.t.test(power = 0.99, d = 0.54, sig.level = 0.05, type = "one.sample")

311



Chapter 9. Correlation and simple linear regression

Figure 9.13.: A priori power analysis to estimate the sample size needed to have a power of 0.99

312



9.10. Bootstrapping the simple linear regression

One-sample t test power calculation

n = 64.96719

d = 0.54

sig.level = 0.05

power = 0.99

alternative = two.sided

By increasing sample size to 66, with the same assumptions as before, power increases to 99%.

9.10. Bootstrapping the simple linear regression

A non-parametric test for the intercept and slope of a linear regression can be obtained by bootstrapping.

# load boot

library(boot)

# function to obtain regression weights

bs <- function(formula, data, indices) {

d <- data[indices, ] # allows boot to select sample

fit <- lm(formula, data = d)

return(coef(fit))

}

# bootstrapping with 1000 replications

results <- boot(

data = sturgeon.male,

statistic = bs,

R = 1000, formula = log10(fklngth) ~ log10(age)

)

# view results

results

ORDINARY NONPARAMETRIC BOOTSTRAP

313



Chapter 9. Correlation and simple linear regression

Call:

boot(data = sturgeon.male, statistic = bs, R = 1000, formula = log10(fklngth) ~

log10(age))

Bootstrap Statistics :

original bias std. error

t1* 1.1919926 0.001710115 0.03414993

t2* 0.3408557 -0.001228031 0.02715333

For each parameter in the model (here the intercept is labeled t1\* and the slope of the regression line is labeled

t2\*) , you obtain:

Pour chaque paramètre du modèle (ici l’ordonnée à l’origine est appelée t1* et la pente de la régression t2\*), R

imprime :

1. original original parameter estimate (on all non-bootstrapped data)

2. bias the difference between the mean value of all bootstrap estimates and the original value

3. std. error standard error of the bootstrap estimate

par(mfrow = c(2, 2))

plot(results, index = 1) # intercept

plot(results, index = 2) # log10(age)

314



9.10. Bootstrapping the simple linear regression

Histogram of t

t*

D
en

si
ty

1.05 1.15 1.25

0
2

4
6

8
12

−3 −1 1 3

1.
10

1.
20

1.
30

Quantiles of Standard Normal

t*
Figure 9.14.

Histogram of t

t*

D
en

si
ty

0.25 0.35 0.45

0
5

10
15

−3 −1 1 3

0.
25

0.
35

Quantiles of Standard Normal

t*

Figure 9.15.

The distribution of the bootstrapped estimates is rather Gaussian, with only small deviations in the tails (where

it counts for confidence intervals…). One could use the standard error of the bootstrap estimates to calculate a

symmetrical confidence interval as mean +- t SE. But, given that R can as easily calculate a bias-corrected adjusted

(BCa) confidence interval, or one based on the actual distribution, (Percentile) why not have it do it all:

315



Chapter 9. Correlation and simple linear regression

# interval de confiance pour l'ordonnée à l'origine

boot.ci(results, type = "all", index = 1)

Warning in boot.ci(results, type = "all", index = 1): bootstrap variances

needed for studentized intervals

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = results, type = "all", index = 1)

Intervals :

Level Normal Basic

95% ( 1.123, 1.257 ) ( 1.126, 1.259 )

Level Percentile BCa

95% ( 1.125, 1.258 ) ( 1.113, 1.252 )

Calculations and Intervals on Original Scale

# intervalle de confiance pour la pente

boot.ci(results, type = "all", index = 2)

Warning in boot.ci(results, type = "all", index = 2): bootstrap variances

needed for studentized intervals

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = results, type = "all", index = 2)

Intervals :

Level Normal Basic

316



9.10. Bootstrapping the simple linear regression

95% ( 0.2889, 0.3953 ) ( 0.2863, 0.3942 )

Level Percentile BCa

95% ( 0.2875, 0.3954 ) ( 0.2934, 0.4027 )

Calculations and Intervals on Original Scale

Here the 4 types of CI that R managed to calculate are essentially the same. Had data been violating more strongly

the standard assumptions (normality, homoscedasticity), then the different methods (Normal, Basic, Percentile, and

BCa) would have diverged more. In that case, which one is best? BCa has the favor of most, currently.

317



Chapter 10
Two - sample comparisons

After completing this laboratory exercise, you should be able to:

• Use R to visually examine data.

• Use R to compare the means of two normally distributed samples.

• Use R to compare the means of two non-normally distributed samples.

• Use R to compare the means of two paired samples

10.1. R packages and data

For this la b you need:

• R

– car

– lmtest

– boot

– pwr

– ggplot2

– performance

– lmPerm

– pwr

• data:

– sturgeon.csv

318



10.2. Visual examination of sample data

– skulldat_2020.csv

Loading required package: carData

Loading required package: zoo

Attaching package: 'zoo'

The following objects are masked from 'package:base':

as.Date, as.Date.numeric

Attaching package: 'boot'

The following object is masked from 'package:car':

logit

You need to load the packages in R with library() and if need needed install them first with install.packages()

For the data, load them using the read.csv() function.

10.2. Visual examination of sample data

One of the first steps in any type of data analysis is to visualize your data with plots and summary statistics, to get an

idea of underlying distributions, possible outliers, and trends in your data. This often begins with plots of the data,

such as histograms, probability plots, and box plots, that allow you to get a feel for whether your data are normally

distributed, whether they are correlated one to the other, or whether there are any suspicious looking points that may

lead you to go back to the original data file to check for errors.

Suppose we want to test the null hypothesis that the size, as indexed by fork length ( fklngth in file sturgeon.csv

- the length, in cm, from the tip of the nose to the base of the fork in the caudal fin), of sturgeon at The Pas and

Cumberland House is the same. To begin, we have a look at the underlying distributions of the sample data to get a

feel for whether the data are normally distributed in each sample. We will not actually test for normality at this point;

319



Chapter 10. Two - sample comparisons

the assumption of normality in parametric analyses refers always to the residuals and not the raw data themselves.

However, if the raw data are non-normally distributed, then you usually have good reason to suspect that the residuals

also will be non-normally distributed.

An excellent way to visually compare a data distribution to a normal distribution is to superimpose a histogram of

the data and a normal curve. To do so, we must proceed in two steps:

1. tell R that we want to make a histogram with a density curve superimposed

2. tell R that we want this to be done for both locations.

• Using the data file sturgeon.csv , generate histograms for fklngth data at The Pas and Cumberland House.

# use "sturgeon" dataframe to make plot called mygraph

# and define x axis as representing fklngth

mygraph <- ggplot(

data = sturgeon,

aes(x = fklngth)

) +

xlab("Fork length (cm)")

# add data to the mygraph ggplot

mygraph <- mygraph +

geom_density() + # add data density smooth

geom_rug() + # add rug (bars at the bottom of the plot)

geom_histogram( # add black semitransparent histogram

aes(y = ..density..),

color = "black", alpha = 0.3

) +

# add normal curve in red, with mean and sd from fklength

stat_function(

fun = dnorm,

args = list(

mean = mean(sturgeon$fklngth),

sd = sd(sturgeon$fklngth)

),

color = "red"

320



10.2. Visual examination of sample data

)

# display graph, by location

mygraph + facet_grid(. ~ location)

CUMBERLAND THE_PAS

30 40 50 60 30 40 50 60

0.00

0.05

0.10

Fork length (cm)

de
ns

ity

Figure 10.1.: Distribution of sturgeon length at 2 locations

Based on your visual inspection, are the two samples normally distributed? Visual inspection of these plots suggests

that this variable is approximately normally distributed in each sample.

Since we are interested in finding out if mean fish size differs among the two locations, it is probably also a good

idea to generate a graph that compares the two groups of data. A box plot works well for this.

• Generate a box plot of fklngth grouped by location . What do you conclude about differences in size

among the two locations?

ggplot(data = sturgeon, aes(

x = location,

y = fklngth

)) +

geom_boxplot(notch = TRUE)

321



Chapter 10. Two - sample comparisons

30

40

50

60

CUMBERLAND THE_PAS
location

fk
ln

gt
h

Figure 10.2.: Boxplot of sturgeon legnth at 2 locations

It would appear as though there are not big differences in fish size among the two locations, although fish size at The

Pas looks to be more variable, with a bigger range in size and outliers (defined as values > 1.5 * inter-quartile range)

at both ends of the distribution.

10.3. Comparing means of two independent samples: parametric and

non-parametric comparisons

Test the null hypothesis that the mean fklngth of The Pas and Cumberland House samples are the same. Using 3

different tests:

1. parametric test with equal variances

2. parametric test with unequal variances

3. non-parametric test

What do you conclude?

# t-test assuming equal variances

t.test(

fklngth ~ location,

322



10.3. Comparing means of two independent samples: parametric and non-parametric comparisons

data = sturgeon,

alternative = "two.sided",

var.equal = TRUE

)

Two Sample t-test

data: fklngth by location

t = 2.1359, df = 184, p-value = 0.03401

alternative hypothesis: true difference in means between group CUMBERLAND and group THE_PAS is not equal to 0

95 percent confidence interval:

0.1308307 3.2982615

sample estimates:

mean in group CUMBERLAND mean in group THE_PAS

45.08439 43.36984

# t-test assuming unequal variances

t.test(

fklngth ~ location,

data = sturgeon,

alternative = "two.sided",

var.equal = FALSE

)

Welch Two Sample t-test

data: fklngth by location

t = 2.2201, df = 169.8, p-value = 0.02774

alternative hypothesis: true difference in means between group CUMBERLAND and group THE_PAS is not equal to 0

95 percent confidence interval:

0.1900117 3.2390804

sample estimates:

323



Chapter 10. Two - sample comparisons

mean in group CUMBERLAND mean in group THE_PAS

45.08439 43.36984

# non-parametric test

wilcox.test(

fklngth ~ location,

data = sturgeon,

alternative = "two.sided"

)

Wilcoxon rank sum test with continuity correction

data: fklngth by location

W = 4973, p-value = 0.06296

alternative hypothesis: true location shift is not equal to 0

Based on the t-test, we would reject the null hypothesis, i.e. there is a significant (but not highly significant) difference

in mean fork length between the two populations.

Note that using the Wilcoxon rank sum test, we do not reject the null hypothesis. The two different tests therefore give

us two different results. The significant difference obtained using the t-test may, at least in part, be due to deviations

from normality or homoscedasticity; on the other hand, the non-significant difference obtained using the U -statistic

may be due to the fact that for fixed sample size, the power of a non-parametric test is lower than the corresponding

parametric test. Given the p values obtained from both tests, and the fact that for samples of this size (84 and 101),

the t-test is comparatively robust with respect to non-normality, I would be inclined to reject the null hypothesis. In

practice to avoid P-hacking, you should decide which test is appropriate first and then apply and interpret it, or if you

decide to do all you should present results of all and interpret accordingly.

Before accepting the results of the parametric t-test and rejecting the null hypothesis that there is no difference in

size between the two locations, one should do some sort of assessment to determine if the model fits the assumption

of normally distributed residuals and equal variances. Preliminary examination of the raw data suggested the data

appeared roughly normal but there might be problems with variances (since the spread of data for The_Pas was much

greater than for Cumberland). We can examine this more closely by looking at the residuals. An easy way to do so,

is to fit a linear model and use the residual diagnostic plots:

324



10.3. Comparing means of two independent samples: parametric and non-parametric comparisons

m1 <- lm(fklngth ~ location, data = sturgeon)

par(mfrow = c(2, 2))

plot(m1)

43.5 44.0 44.5 45.0

−
20

Fitted values

R
es

id
ua

ls Residuals vs Fitted
101

825

−3 −2 −1 0 1 2 3

−
2

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals
101

8 25

43.5 44.0 44.5 45.0

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
101825

0.000 0.004 0.008 0.012
−

4

LeverageS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance

Residuals vs Leverage
101

825

Figure 10.3.: Model assumption checks

The first plot above shows the spread of the residuals around the estimated values for the two groups and allows

us to get a feel for whether there are problems with the assumption of homogeneity of variances. If the variances

were equal, the vertical spread of the two clusters of points should be about the same. The above plot shows that the

vertical spread of the group with the smaller mean is greater than it is for the larger mean, suggesting again that there

are problems with the variances. We can test this formally by examining the mean differences in the absolute value

of the residuals.

The second graph above is a normal QQ plot (or probability plot) of the residuals of the model. Note that these

generally fall on a straight line, suggesting there is no real problem with normality. We can do a formal test for

normality on the residuals using the Shapiro-Wilk test.

shapiro.test(residuals(m1))

Shapiro-Wilk normality test

325



Chapter 10. Two - sample comparisons

data: residuals(m1)

W = 0.97469, p-value = 0.001857

Hummm. The test indicates that the residuals are not normal. But, given that (a) the distribution is not very far (at

least visually) from normal, and that (b) the number of observations in each location is reasonably large (i.e. >30),

we do not need to be overly concerned with this violation of the normality assumption.

How about equality of variance?

library(car)

leveneTest(m1)

Warning in leveneTest.default(y = y, group = group, ...): group coerced to

factor.

Df F value Pr(>F)

group 1 11.51454 0.0008456

184 NA NA

bptest(m1)

studentized Breusch-Pagan test

data: m1

BP = 8.8015, df = 1, p-value = 0.00301

The above are the results of two tests implemented in R (in the car and lmtest packages that can be used to

test for equal variances in t-tests or linear models involving only discontinuous or categorical independent variables.

Doing the two of them is overkill. There is not much to prefer one test over another. Levene test is possibly the better

known. It tests whether the mean of absolute values of the residuals differs among groups. The Breusch-Pagan test

has the advantage of being applicable to more linear models (it can deal with regression-type continuous independent

326



10.4. Bootstrap and permutation tests to compare 2 means

variables, at least to some extent). It tests whether the studentized (i.e. scaled by their sd estimate) squared residuals

vary with the independent variables in a linear model. In this case, both indicate that variances are unequal.

On the basis of these results, we conclude that there is evidence (albeit weak) to reject the null hypothesis of no

difference in fklngth by location. We have modified the t-test to accommodate unequal variances, and are

satisfied that the assumption of normally distributed residuals is sufficiently met. Thus, it appears that fklngth at

Cumberland is greater than fklngth at The Pas.

10.4. Bootstrap and permutation tests to compare 2 means

10.4.1. Bootstrap

Bootstrap and permutation tests can be used to compare means (or other statistics) between pairs of samples. The

general idea is simple, and it can be implemented in more ways than I can count. Here, I use existing tools and the

fact that a comparison of means can be construed as a test of a linear model. We will be able to use similar code later

on when we fit more complex (but fun!) models.

library(boot)

The first section defines the function that I called bs that simply extracts coefficients from a fitted model:

# function to obtain model coefficients for each iteration

bs <- function(formula, data, indices) {

d <- data[indices, ]

fit <- lm(formula, data = d)

return(coef(fit))

}

The second section with the boot() command is where the real work is done: take data in sturgeon, bootstrap

𝑅 = 1000 times, each time fit the model fklngth vs location, and keep the values calculated by the bs()

function.

# bootstrapping with 1000 replications

results <- boot(

data = sturgeon, statistic = bs, R = 1000,

327



Chapter 10. Two - sample comparisons

formula = fklngth ~ location

)

# view results

results

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = sturgeon, statistic = bs, R = 1000, formula = fklngth ~

location)

Bootstrap Statistics :

original bias std. error

t1* 45.084391 -0.01669742 0.4280440

t2* -1.714546 0.02579254 0.7554991

So we get the original estimates for the two coefficients in this model: the mean at the first (alphabetical) location,

Cumberland, and the difference in means between Cumberland and The Pas ). It is the second parameter, the

difference between means, which is of interest here.

plot(results, index = 2)

328



10.4. Bootstrap and permutation tests to compare 2 means

Histogram of t

t*

D
en

si
ty

−4 −2 0 1

0.
0

0.
2

0.
4

−3 −1 1 3

−
4

−
2

0

Quantiles of Standard Normal

t*
Figure 10.4.: Distribution of bootstrapped mean difference

# get 95% confidence intervals

boot.ci(results, type = "bca", index = 2)

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = results, type = "bca", index = 2)

Intervals :

Level BCa

95% (-3.329, -0.298 )

Calculations and Intervals on Original Scale

The 95% CI for the difference between the two means does not include 0. Hence, the bootstrap test indicates that the

two means are not equals.

329



Chapter 10. Two - sample comparisons

10.4.2. Permutation

Permutation tests for linear models can easily be done using the lmPerm package .

m1Perm <- lmp(

fklngth ~ location,

data = sturgeon,

perm = "Prob"

)

[1] "Settings: unique SS "

The lmp() function does all the work for us. Here it is run with the option perm to control the stopping rule used.

Option Prob stops the sampling when the estimated standard deviation of the p-value falls below some fraction of the

estimated. It is one of many stopping rules that one could use to do permutations on a subset of all the possibilities

(because it would take foreeeever to do them all, even on your fast machine).

summary(m1Perm)

Call:

lmp(formula = fklngth ~ location, data = sturgeon, perm = "Prob")

Residuals:

Min 1Q Median 3Q Max

-18.40921 -3.75370 -0.08439 3.76598 23.48055

Coefficients:

Estimate Iter Pr(Prob)

location1 0.8573 3180 0.0305 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.454 on 184 degrees of freedom

330



10.5. Comparing the means of paired samples

Multiple R-Squared: 0.02419, Adjusted R-squared: 0.01889

F-statistic: 4.562 on 1 and 184 DF, p-value: 0.03401

1. Iter coefficient: the Prob stopping rule stopped after 3180 iterations. Note that this number will vary each

time you run this snippet of code. These are random permutation results, so expect variability.

2. Pr(Prob) coefficient: The estimated probability associated to H0 is 0.0305 . The observed difference in

fklngth between the two locations was larger than the permuted differences in about (1 - 0.0305= about 96.9%)

of the 3180 cases. Mind you, 3180 permutations is not a large number, so small p values can’t be expected to

be very precise. If it is critical that you get more precise p values, more permutations would be needed. Two

parameters can be tweaked: maxIter, the maximum number of iterations (default=5000), and Ca, that stops

iterations when estimated standard error of the estimated p is less than Ca*p. Default 0.1.

3. F-statistic: The rest is the standard output for the model fitted to the data, with the standard parametric

test. Here the p-value, assuming all assumptions are met, is 0.034.

10.5. Comparing the means of paired samples

In some experimental designs, individuals are measured twice: common examples are the measurement of the

same individual at two different times during development, or of the same individual subjected to two different

experimental treatments. In these cases, the two samples are not independent (they include the same individuals),

and a paired comparison must be made.

The file skulldat_2020.csv shows measurements of lower face width of 15 North American girls measured at

age 5 and again at age 6 years (data from Newman and Meredith, 1956).

• Let’s first run a standard t-test comparing the face width at age 5 and 6, not taking into account that the data

are not independent and that they are consecutive measurements on the same individuals.

skull <- read.csv("data/skulldat_2020.csv")

t.test(width ~ age,

data = skull,

alternative = "two.sided"

)

Welch Two Sample t-test

331



Chapter 10. Two - sample comparisons

data: width by age

t = -1.7812, df = 27.93, p-value = 0.08576

alternative hypothesis: true difference in means between group 5 and group 6 is not equal to 0

95 percent confidence interval:

-0.43002624 0.03002624

sample estimates:

mean in group 5 mean in group 6

7.461333 7.661333

So far, we specified the t-test using a formula notation as y ~ x where y is the variable for which we want to

compare the means and x is a variable defining the groups. This works really well when the samples are not paired

and when the data is presented in a long format. For example theskull data is presented in a long format and

contains 3 variables:

• width: head width for each observations

• age: age at measurement 5 or 6

• id: person identity

head(skull)

width age id

7.33 5 1

7.53 6 1

7.49 5 2

7.70 6 2

7.27 5 3

7.46 6 3

When data are paired, we need to indicate how they are paired. In the skulldata, samples are paired by an individual

identity, id, with mearurement taken at different ages. However, the function t.test does not cope well with this

data structure. We need to transpose the data from a long to a wide format where we have a column per group, with

the data of a given individual on the same line. Here is how we can do it.

332



10.5. Comparing the means of paired samples

skull_w <- data.frame(id = unique(skull$id))

skull_w$width5 <- skull$width[match(skull_w$id, skull$id) & skull$age == 5]

skull_w$width6 <- skull$width[match(skull_w$id, skull$id) & skull$age == 6]

head(skull_w)

id width5 width6

1 7.33 7.53

2 7.49 7.70

3 7.27 7.46

4 7.93 8.21

5 7.56 7.81

6 7.81 8.01

Now, let’s run the appropriate paired t-test. What do you conclude? Compare this with the previous result and explain

any differences.

t.test(skull_w$width5, skull_w$width6,

alternative = "two.sided",

paired = TRUE

)

Paired t-test

data: skull_w$width5 and skull_w$width6

t = -19.72, df = 14, p-value = 1.301e-11

alternative hypothesis: true mean difference is not equal to 0

95 percent confidence interval:

-0.2217521 -0.1782479

sample estimates:

mean difference

-0.2

333



Chapter 10. Two - sample comparisons

The first analysis above assumes that the two samples of girls at age 5 and 6 are independent samples, whereas the

second analysis assumes that the same girl is measured twice, once at age 5 and once at age 6 years.

Note that in the former case, we accept the null based on 𝑝 = 0.05, but in the latter we reject the null. In other words,

the appropriate (paired sample) test shows a very significant effect of age, whereas the inappropriate one does not.

The reason is because there is a strong correlation between face width at age 5 and face width at age 6:

graphskull <- ggplot(data = skull_w, aes(x = width5, y = width6)) +

geom_point() +

labs(x = "Skull width at age 5", y = "Skull width at age 6") +

geom_smooth() +

scale_fill_continuous(low = "lavenderblush", high = "red")

graphskull

7.00

7.25

7.50

7.75

8.00

8.25

7.00 7.25 7.50 7.75 8.00
Skull width at age 5

S
ku

ll 
w

id
th

 a
t a

ge
 6

Figure 10.5.: Relation between head width at age 5 and 6

With r = 0.9930841. In the presence of correlation, the standard error of the pairwise difference in face width at age

5 and 6 is much smaller than the standard error of the difference between the mean face width at age 5 and 6. Thus,

the associated t-statistic will be much larger for a paired sample test, i.e. the power of the test is much greater, and

the p values are smaller.

• Repeat the above procedure with the nonparametric alternative, the Wilcoxon signed-rank test. What do you

conclude?

334



10.5. Comparing the means of paired samples

wilcox.test(skull_w$width5, skull_w$width6,

alternative = "two.sided",

paired = TRUE

)

Warning in wilcox.test.default(skull_w$width5, skull_w$width6, alternative =

"two.sided", : cannot compute exact p-value with ties

Wilcoxon signed rank test with continuity correction

data: skull_w$width5 and skull_w$width6

V = 0, p-value = 0.0007193

alternative hypothesis: true location shift is not equal to 0

So, we reach the same conclusion as we did using the paired sample t-test and conclude there are significant differences

in skull sizes of girls aged 5 and 6 (what a surprise!).

But, wait a minute. We have used two-tailed tests here. But, given what we know about how children grow, a one-tail

hypothesis would be preferable. This can be done by changing the alternative option. One uses the alternative

hypothesis to decide if it is “less” or greater”. Here, we expect that if there is an effect (i.e the alternative hypothesis),

width5 will be less than width6

t.test(skull_w$width5, skull_w$width6,

alternative = "less",

paired = TRUE

)

Paired t-test

data: skull_w$width5 and skull_w$width6

t = -19.72, df = 14, p-value = 6.507e-12

alternative hypothesis: true mean difference is less than 0

335



Chapter 10. Two - sample comparisons

95 percent confidence interval:

-Inf -0.1821371

sample estimates:

mean difference

-0.2

wilcox.test(skull_w$width5, skull_w$width6,

alternative = "less",

paired = TRUE

)

Warning in wilcox.test.default(skull_w$width5, skull_w$width6, alternative =

"less", : cannot compute exact p-value with ties

Wilcoxon signed rank test with continuity correction

data: skull_w$width5 and skull_w$width6

V = 0, p-value = 0.0003597

alternative hypothesis: true location shift is less than 0

INFO Note

Note that instead of rerunning the t-test specifying a one-tailed test, you can:

• if the sign of the estimate goes in the same direction as the alternative hypothesis, simply divide by 2 the

probability you obtain with the two-tailed test

• if not the sign of the estimate is in the opposite direction of the alternative hypothesis, use 1 − 𝑝/2

To estimate the power of a paired t-test in R, we can use the function pwr.t.test()as for other t-tests but we need

to specify the argument type = "paired". To calculate cohen’s d for a paired t-test you need to use the formula

𝑑 = 𝑚𝑒𝑎𝑛(difference)/𝑠𝑑(difference)

skull_w$diff <- skull_w$width6 - skull_w$width5

pwr.t.test(

n = 15,

336



10.6. Bibliography

d = mean(skull_w$diff) / sd(skull_w$diff),

type = "paired")

Paired t test power calculation

n = 15

d = 5.091751

sig.level = 0.05

power = 1

alternative = two.sided

NOTE: n is number of *pairs*

10.6. Bibliography

Bumpus, H.C. (1898) The elimination of the unfit as illustrated by the introduced sparrow, Passer domesticus.

Biological Lectures, Woods Hole Biology Laboratory, Woods Hole, 11 th Lecture: 209 - 226.

Newman, K.J. and H.V. Meredith. (1956) Individual growth in skeletal bigonial diameter during the childhood

period from 5 to 11 years of age. Amer. J. Anat. 99: 157 - 187.

337



Chapter 11
One-way ANOVA

After completing this laboratory exercise, you should be able to:

• Use R to do a one-way parametric ANOVA with multiple comparisons

• Use R to test the validity of the parametric ANOVA assumptions

• Use R to perform a one-way non-parametric ANOVA

• Use R to transform your data so that the assumptions of parametric ANOVA are met.

11.1. R packages and data

For this lab you need:

• R packages:

– ggplot2

– multcomp

– car

• data

– dam10dat.csv

library(ggplot2)

library(car)

Loading required package: carData

338



11.2. One-way ANOVA with multiple comparisons

library(multcomp)

Loading required package: mvtnorm

Loading required package: survival

Loading required package: TH.data

Loading required package: MASS

Attaching package: 'TH.data'

The following object is masked from 'package:MASS':

geyser

11.2. One-way ANOVA with multiple comparisons

The one-way ANOVA is the multi-group analog of the t-test, which is used to compare two groups/levels. It makes

essentially the same assumptions, and in the case of two groups/levels, is in fact mathematically equivalent to the

t-test.

In 1960-1962, the Grand Rapids Dam was built on the Saskatchewan River upstream of Cumberland House. There

are anecdotal reports that during dam construction, a number of large sturgeon were stranded and died in shallow

pools. Surveys of sturgeon were carried out in 1954, 1958, 1965 and 1966 with fork length (fklngth) and round

weight (rdwght) being recorded (not necessarily both measurements for each individual). These data are in the data

file Dam10dat.csv.

11.2.1. Visualize data

• Using Dam10dat.csv, you must first change the data type of the numerical variable year , so that R recognizes

that we wish to treat this variable as a factor variable and not a continuous variable.

339



Chapter 11. One-way ANOVA

LIGHTBULB Solution

dam10dat <- read.csv("data/Dam10dat.csv")

dam10dat$year <- as.factor(dam10dat$year)

str(dam10dat)

'data.frame': 118 obs. of 21 variables:

$ year : Factor w/ 4 levels "1954","1958",..: 1 1 1 1 1 1 1 1 1 1 ...

$ fklngth : num 45 50 39 46 54.5 49 42.5 49 56 54 ...

$ totlngth: num 49 NA 43 50.5 NA 51.7 45.5 52 60.2 58.5 ...

$ drlngth : logi NA NA NA NA NA NA ...

$ drwght : num 16 20.5 10 17.5 19.7 21.3 9.5 23.7 31 27.3 ...

$ rdwght : num 24.5 33 15.5 28.5 32.5 35.5 15.3 40.5 51.5 43 ...

$ sex : int 1 1 1 2 1 2 1 1 1 1 ...

$ age : int 24 33 17 31 37 44 23 34 33 47 ...

$ lfkl : num 1.65 1.7 1.59 1.66 1.74 ...

$ ltotl : num 1.69 NA 1.63 1.7 NA ...

$ ldrl : logi NA NA NA NA NA NA ...

$ ldrwght : num 1.2 1.31 1 1.24 1.29 ...

$ lrdwght : num 1.39 1.52 1.19 1.45 1.51 ...

$ lage : num 1.38 1.52 1.23 1.49 1.57 ...

$ rage : int 4 6 3 6 7 7 4 6 6 7 ...

$ ryear : int 1954 1954 1954 1954 1954 1954 1954 1954 1954 1954 ...

$ ryear2 : int 1958 1958 1958 1958 1958 1958 1958 1958 1958 1958 ...

$ ryear3 : int 1966 1966 1966 1966 1966 1966 1966 1966 1966 1966 ...

$ location: int 1 1 1 1 1 1 1 1 1 1 ...

$ girth : logi NA NA NA NA NA NA ...

$ lgirth : logi NA NA NA NA NA NA ...

• Next, have a look at the fklngth data, just as we did in the last lab for t-tests. Create a histogram with density

line grouped by year to get a feel for what’s happening with your data and a boxplot of length per year. What

can you say about these data?

340



11.2. One-way ANOVA with multiple comparisons

LIGHTBULB Solution

mygraph <- ggplot(dam10dat, aes(x = fklngth)) +

labs(x = "Fork length (cm)") +

geom_density() +

geom_rug() +

geom_histogram(aes(y = ..density..),

color = "black",

alpha = 0.3

) +

stat_function(

fun = dnorm,

args = list(

mean = mean(dam10dat$fklngth),

sd = sd(dam10dat$fklngth)

),

color = "red"

)

# display graph, by year

mygraph + facet_wrap(~year, ncol = 2)

341



Chapter 11. One-way ANOVA

1965 1966

1954 1958

40 50 60 70 40 50 60 70

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

Fork length (cm)

de
ns

ity

Figure 11.1.: Distribution of sturgeon length per year

boxplot(fklngth ~ year, data = dam10dat)

1954 1958 1965 1966

40
50

60
70

year

fk
ln

gt
h

Figure 11.2.: Boxplot of sturgeon length per year

It appears as though there may have been a small drop in fklngth after the construction of the dam, but the data

342



11.2. One-way ANOVA with multiple comparisons

are variable and the effects are not clear. There might also be some problems with normality in the 1954 and 1966

samples, and it looks as though there are outliers in the 1958 and 1966 samples. Let’s proceed with testing the

assumptions of the ANOVA by running the analysis and looking at the residuals.

11.2.2. Testing the assumptions of a parametric ANOVA

Parametric one-way ANOVAs have three major assumptions:

1. the residuals are normally distributed

2. the error variance is the same for all groups (homoscedasticity)

3. the residuals are independent.

These assumptions must be tested before we can accept the results of any parametric ANOVA.

• Carry out a one-way ANOVA on fklngth by year and produce the residual diagnostic plots

# Fit anova model and plot residual diagnostics

anova.model1 <- lm(fklngth ~ year, data = dam10dat)

par(mfrow = c(2, 2))

plot(anova.model1)

43 44 45 46 47 48

−
10

Fitted values

R
es

id
ua

ls Residuals vs Fitted
592387

−2 −1 0 1 2

−
2

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals
59

2387

43 44 45 46 47 48

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
592387

0.00 0.04 0.08

−
2

LeverageS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance
0.5

Residuals vs Leverage
5923

71

Figure 11.3.: Diagnostic plots for a one-way ANOVA

343



Chapter 11. One-way ANOVA

Exclamation-Triangle Warning

Double check that the independent variable is a factor. If the independent variable is a character, then you

will obtain only 3 graphs and an error message like:

‘hat values (leverages) are all = 0.1

and there are no factor predictors; no plot no. 5‘

Judging from the plots, it looks as though there may be problems with both normality and variance heterogeneity.

Note that there is one point (case 59) with large expected values and a large residual that appear to lie well off the

line: this is the outlier we noted earlier. This point might be expected to inflate the variance for the group it belongs

to. Formal tests may also provide some insight as to whether we should be concerned about normality and variance

heterogeneity.

• Perform a normality test on the residuals from the ANOVA.

shapiro.test(residuals(anova.model1))

Shapiro-Wilk normality test

data: residuals(anova.model1)

W = 0.91571, p-value = 1.63e-06

This test confirms our suspicions from the probability plot: the residuals are not normally distributed. Recall, however,

that the power here is high, so only small deviations from normality are required to reject the null.

• Next, test for homoscedasticity:

leveneTest(fklngth ~ year, data = dam10dat)

Df F value Pr(>F)

group 3 2.8159 0.0423438

114 NA NA

The probability value tells you that you can reject the null hypothesis that there is no difference in variances among

years. Thus, we conclude there is evidence that the variances in the groups are not equal.

344



11.2. One-way ANOVA with multiple comparisons

11.2.3. Performing the ANOVA

Let’s look at the results of the ANOVA, assuming for the moment that assumptions are met well enough.

summary(anova.model1)

Call:

lm(formula = fklngth ~ year, data = dam10dat)

Residuals:

Min 1Q Median 3Q Max

-11.2116 -2.6866 -0.7116 2.2103 26.7885

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.0243 0.8566 56.061 < 2e-16 ***

year1958 0.1872 1.3335 0.140 0.88859

year1965 -5.5077 1.7310 -3.182 0.00189 **

year1966 -3.3127 1.1684 -2.835 0.00542 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.211 on 114 degrees of freedom

Multiple R-squared: 0.1355, Adjusted R-squared: 0.1128

F-statistic: 5.957 on 3 and 114 DF, p-value: 0.0008246

• Coefficients: Estimates Note the 4 coefficients printed. They can be used to obtain the predicted values for

the model (i.e. the group means). The mean fklngth for the first year (1954) is 48.0243. The coefficients for

the 3 other years are the difference between the mean for that year and for 1954. So, the mean for 1965 is

(48.0243-5.5077=42.5166). For each estimated coefficient, there is a standard error, a t-value and associated

probability (for H0 that the coefficient is 0). Note here that coefficients for 1965 and 1966 are both negative

and significantly less than 0. Fish were smaller after the construction of the dam than in 1954. Take these

p-values with a grain of salt: these are not corrected for multiple comparisons, and they constitute only a

345



Chapter 11. One-way ANOVA

subset of the possible comparisons. In general, I pay little attention to this part of the output and look more at

what comes next.

• Residual standard error: The square root of the variance of the residuals (observed minus fitted values)

corresponds to the amount of variability that is unexplained by the models (here an estimate of how much size

varied among fish, once corrected for differences among years)

• Mutiple R-squared The R-squared is the proportion of the variance of the dependent variable that can be

explained by the model. Here the model explains only 13.5% of the variability. Size differences among year

are relatively small compared to the ranges of sizes that can occur within years. This corresponds well to the

visual impression left by the histograms of fklngth per year

4. F-Statistic This is the p-value for the “omnibus” test, the test that all means are equal. Here it is much smaller

than 0.05 and hence we would reject H0 and conclude that fklngth varies among the years

The anova() command produces the standard ANOVA table that contains most of the same information:

anova(anova.model1)

Df Sum Sq Mean Sq F value Pr(>F)

year 3 485.2642 161.75472 5.95744 0.0008246

Residuals 114 3095.2955 27.15171 NA NA

The total variability in fklngth sums of square is partitioned into what can be accounted for by year (485.26) and what

is left unexplained as residual variability (3095.30). Year indeed explains (485.26/(3095.30 + 485.26) = .1355

or 13.55% of the variability). The mean square of the residuals is their variance.

11.2.4. Performing multiple comparisons of means test

• The pairwise.t.test() function can be used to compare means and adjust (or not) probabilities for multiple

comparisons by choosing one of the options for the argument p.adj:

Comparing all means without corrections for multiple comparisons.

pairwise.t.test(dam10dat$fklngth, dam10dat$year,

p.adj = "none"

)

346



11.2. One-way ANOVA with multiple comparisons

Pairwise comparisons using t tests with pooled SD

data: dam10dat$fklngth and dam10dat$year

1954 1958 1965

1958 0.8886 - -

1965 0.0019 0.0022 -

1966 0.0054 0.0079 0.1996

P value adjustment method: none

Option "bonf" adjusts the p-values according to the Bonferroni correction. In this case, since there are 6 p-values

calculated, it amounts to simply multiplying the uncorrected p-values by 6 (unless the result is above 1, in that case

the adjusted p-value is 1).

pairwise.t.test(dam10dat$fklngth, dam10dat$year,

p.adj = "bonf"

)

Pairwise comparisons using t tests with pooled SD

data: dam10dat$fklngth and dam10dat$year

1954 1958 1965

1958 1.000 - -

1965 0.011 0.013 -

1966 0.033 0.047 1.000

P value adjustment method: bonferroni

Option "holm" is the sequential Bonferroni correction, where the p-values are ranked from (i=1) smallest to (N) largest.

The correction factor for p-values is then $(𝑁 −𝑖+1). Here, for example, we have N=6 pairs that are compared. The

347



Chapter 11. One-way ANOVA

lowest uncorrected p-value is 0.0019 for 1954 vs 1965. The corrected p-value becomes 0.0019∗(6−1+1) = 0.011.

The second lowest p-value is 0.0022. The corrected p/value is therefore 0.0022 ∗ (6 − 2 + 1) = 0.011. For the

highest p-value, the correction is (𝑁 − 𝑁 + 1) = 1, hence it is equal to the uncorrected probability.

pairwise.t.test(dam10dat$fklngth, dam10dat$year,

p.adj = "holm"

)

Pairwise comparisons using t tests with pooled SD

data: dam10dat$fklngth and dam10dat$year

1954 1958 1965

1958 0.889 - -

1965 0.011 0.011 -

1966 0.022 0.024 0.399

P value adjustment method: holm

The “fdr” option is for controlling the false discovery rate.

pairwise.t.test(dam10dat$fklngth, dam10dat$year,

p.adj = "fdr"

)

Pairwise comparisons using t tests with pooled SD

data: dam10dat$fklngth and dam10dat$year

1954 1958 1965

1958 0.8886 - -

1965 0.0066 0.0066 -

348



11.2. One-way ANOVA with multiple comparisons

1966 0.0108 0.0119 0.2395

P value adjustment method: fdr

The four post-hoc tests here tell us the same thing: differences are all between two groups of years: 1954/58 and

1965/66, since all comparisons show differences between the 50’s and 60’s but no differences within the 50’s or 60’s.

So, in this particular case, the conclusion is not affected by the choice of adjustment method. But in other situations,

you will observe contradictory results.

Which one to choose? Unadjusted p-values are certainly suspect when there are multiple tests. On the other hand,

the traditional Bonferroni correction is very conservative, and becomes even more so when there are a large number

of comparisons. Recent work suggest that the fdr approach may be a good compromise when there are a lot of

comparisons. The Tukey method of multiple comparisons is one of the most popular and is easily performed with R

(note, however, that there is a pesky bug that manifests itself when the independent variable can look like a number

rather than a factor, hence the little pirouette with paste0() to add a letter m before the first digit):

dam10dat$myyear <- as.factor(paste0("m", dam10dat$year))

TukeyHSD(aov(fklngth ~ myyear, data = dam10dat))

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = fklngth ~ myyear, data = dam10dat)

$myyear

diff lwr upr p adj

m1958-m1954 0.1872141 -3.289570 3.6639986 0.9990071

m1965-m1954 -5.5076577 -10.021034 -0.9942809 0.0100528

m1966-m1954 -3.3126964 -6.359223 -0.2661701 0.0274077

m1965-m1958 -5.6948718 -10.436304 -0.9534397 0.0116943

m1966-m1958 -3.4999106 -6.875104 -0.1247171 0.0390011

m1966-m1965 2.1949612 -2.240630 6.6305526 0.5710111

349



Chapter 11. One-way ANOVA

par(mar = c(4, 7, 2, 1))

plot(TukeyHSD(aov(fklngth ~ myyear, data = dam10dat)), las = 2)

−
10 −

5 0 5

m1966−m1965

m1966−m1958

m1965−m1958

m1966−m1954

m1965−m1954

m1958−m1954

95% family−wise confidence level

Differences in mean levels of myyear

Figure 11.4.: Inter-annual differences in sturgeon length

The confidence intervals, corrected for multiple tests by the Tukey method, are plotted for differences among years.

Unfortunately, the labels are not all printed because they would overlap, but the order is the same as in the preceding

table. The multcomp can produce a better plot version, but requires a bit more code:

# Alternative way to compute Tukey multiple comparisons

# set up a one-way ANOVA

anova_fkl_year <- aov(fklngth ~ myyear, data = dam10dat)

# set up all-pairs comparisons for factor `year'

meandiff <- glht(anova_fkl_year, linfct = mcp(

myyear =

"Tukey"

))

confint(meandiff)

350



11.2. One-way ANOVA with multiple comparisons

Simultaneous Confidence Intervals

Multiple Comparisons of Means: Tukey Contrasts

Fit: aov(formula = fklngth ~ myyear, data = dam10dat)

Quantile = 2.593

95% family-wise confidence level

Linear Hypotheses:

Estimate lwr upr

m1958 - m1954 == 0 0.1872 -3.2705 3.6449

m1965 - m1954 == 0 -5.5077 -9.9962 -1.0191

m1966 - m1954 == 0 -3.3127 -6.3425 -0.2829

m1965 - m1958 == 0 -5.6949 -10.4102 -0.9795

m1966 - m1958 == 0 -3.4999 -6.8565 -0.1433

m1966 - m1965 == 0 2.1950 -2.2162 6.6062

par(mar = c(5, 7, 2, 1))

plot(meandiff)

351



Chapter 11. One-way ANOVA

−10 −5 0 5

m1966 − m1965

m1966 − m1958

m1965 − m1958

m1966 − m1954

m1965 − m1954

m1958 − m1954 (

(

(

(

(

(

)

)

)

)

)

)

95% family−wise confidence level

Linear Function

Figure 11.5.: Inter-annual differences in sturgeon length

This is better. Also useful is to plot the means and their confidence intervals with the Tukey groupings shown as

letters above:

# Compute and plot means and Tukey CI

means <- glht(

anova_fkl_year,

linfct = mcp(myyear = "Tukey")

)

cimeans <- cld(means)

# use sufficiently large upper margin

# plot

old_par <- par(mai = c(1, 1, 1.25, 1))

plot(cimeans)

352



11.3. Data transformations and non-parametric ANOVA

m1954 m1958 m1965 m1966

40
60

myyear

fk
ln

gt
h

a 
  

a 
  

  
b 

  
b 

Figure 11.6.: Inter-annual differences in sturgeon length

Note the letters appearing on top. Years labelled with the same letter do not differ significantly.

11.3. Data transformations and non-parametric ANOVA

In the above example to examine differences in fklngth among years , we detected evidence of non-normality and

variance heterogeneity. If the assumptions underlying a parametric ANOVA are not valid, there are several options:

1. if sample sizes in each group are reasonably large, parametric ANOVA is reasonably robust with respect to the

normality assumption, for the same reason that the t-test is, so the results are probably not too bad;

2. we can transform the data;

3. we can go the non-parametric route.

• Repeat the one-way ANOVA in the section above, but this time run the analysis on the log 10 fklngth . With

this transformation, do some of the problems encountered previously disappear?

# Fit anova model on log10 of fklngth and plot residual diagnostics

par(mfrow = c(2, 2))

anova.model2 <- lm(log10(fklngth) ~ year, data = dam10dat)

plot(anova.model2)

353



Chapter 11. One-way ANOVA

1.63 1.65 1.67
−

0.
1

Fitted values

R
es

id
ua

ls Residuals vs Fitted
5923

116

−2 −1 0 1 2

−
2

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals
5923

116

1.63 1.65 1.67

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
5923116

0.00 0.04 0.08

−
2

LeverageS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance
0.5

Residuals vs Leverage
59

71

23

Figure 11.7.: Diagnostic plots for the ANOVA of sturgeon length by year

Looking at the residuals, things look barely better than before without the log transformation. Running the Wilks-

Shapiro test for normality on the residuals, we get:

shapiro.test(residuals(anova.model2))

Shapiro-Wilk normality test

data: residuals(anova.model2)

W = 0.96199, p-value = 0.002048

So, it would appear that we still have some problems with the assumption of normality and are just on the border line

of meeting the assumption of homogeneity of variances. You have several choices here:

1. try to find a different transformation to satisfy the assumptions,

2. assume the data are close enough to meeting the assumptions, or

3. perform a non-parametric ANOVA.

• The most commonly used non-parametric analog of the parametric one-way ANOVA is the Kruskall-Wallis

one-way ANOVA. Perform a Kruskall-Wallis one-way ANOVA of fklngth , and compare these results to the

parametric analysis above. What do you conclude?

354



11.4. Dealing with outliers

kruskal.test(fklngth ~ year, data = dam10dat)

Kruskal-Wallis rank sum test

data: fklngth by year

Kruskal-Wallis chi-squared = 15.731, df = 3, p-value = 0.001288

So, the conclusion is the same as with the parametric ANOVA: we reject the null that the mean rank is the same for

each year. Thus, despite violation of one or more assumptions, the parametric analysis is telling us the same thing as

the non-parametric analysis: the conclusion is, therefore, quite robust.

11.4. Dealing with outliers

Our preliminary analysis of the relationship between fklngth and year suggested there might be some outliers in

the data. These were evident in the box plots of fklngth by year and flagged as cases 59, 23 and 87 in the residual

probability plot and residual-fit plot. In general, you have to have very good reasons for removing outliers from a

data set (e.g., you know there was a mistake made in the data collection/entry). However, it is often useful to know

how the analysis changes if you remove the outliers from the data set.

• Repeat the original ANOVA of fklngth by year but work with a subset of the data without the outliers. Have

any of the conclusions changed?

damsubset <- dam10dat[-c(23, 59, 87), ] # removes obs 23, 59 and 87

aov_damsubset <- aov(fklngth ~ as.factor(year), damsubset)

summary(aov_damsubset)

Df Sum Sq Mean Sq F value Pr(>F)

as.factor(year) 3 367.5 122.50 6.894 0.000267 ***

Residuals 111 1972.4 17.77

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

355



Chapter 11. One-way ANOVA

shapiro.test(residuals(aov_damsubset))

Shapiro-Wilk normality test

data: residuals(aov_damsubset)

W = 0.98533, p-value = 0.2448

leveneTest(fklngth ~ year, damsubset)

Df F value Pr(>F)

group 3 4.623721 0.0043666

111 NA NA

Elimination of three outliers, in this case, makes things better in terms of the normality assumption, but does not

improve the variances. Moreover, the fact that the conclusion drawn from the original ANOVA with outliers retained

does not change upon their removal reinforces the fact that there is no good reason to remove the points. Instead of a

Kruskall-Wallis rank-based test, a permutation test could be used.

11.5. Permutation test

This is an example for a more complex way of doing permutation that we used when lmPerm was not available.

#############################################################

# Permutation Test for one-way ANOVA

# modified from code written by David C. Howell

# http://www.uvm.edu/~dhowell/StatPages/

# More_Stuff/Permutation%20Anova/PermTestsAnova.html

# set desired number of permutations

nreps <- 500

# to simplify reuse of this code, copy desired dataframe to mydata

mydata <- dam10dat

356



11.5. Permutation test

# copy model formula to myformula

myformula <- as.formula("fklngth ~ year")

# copy dependent variable vector to mydep

mydep <- mydata$fklngth

# copy independent variable vector to myindep

myindep <- as.factor(mydata$year)

################################################

# You should not need to modify code chunk below

################################################

# Compute observed F value for original sample

mod1 <- lm(myformula, data = mydata) # Standard Anova

sum_anova <- summary(aov(mod1)) # Save summary to variable

obs_f <- sum_anova[[1]]$"F value"[1] # Save observed F value

# Print standard ANOVA results

cat(

" The standard ANOVA for these data follows ",

"\n"

)

print(sum_anova, "\n")

cat("\n")

cat("\n")

print("Resampling as in Manly with unrestricted sampling of observations. ")

# Now start resampling

boot_f <- numeric(nreps) # initalize vector to receive permuted

values

boot_f[1] <- obs_f

for (i in 2:nreps) {

newdependent <- sample(mydep, length(mydep)) # randomize dep

var

mod2 <- lm(newdependent ~ myindep) # refit model

b <- summary(aov(mod2))

357



Chapter 11. One-way ANOVA

boot_f[i] <- b[[1]]$"F value"[1] # store F stats

}

permprob <- length(boot_f[boot_f >= obs_f]) / nreps

cat(

" The permutation probability value is: ", permprob,

"\n"

)

# end of code chunk for permutation

Version lmPerm for permutation test.

## lmPerm version of permutation test

library(lmPerm)

# for generality, copy desired dataframe to mydata

# and model formula to myformula

mydata <- dam10dat

myformula <- as.formula("fklngth ~ year")

# Fit desired model on the desired dataframe

mymodel <- lm(myformula, data = mydata)

# Calculate permutation p-value

anova(lmp(myformula, data = mydata, perm = "Prob", center = FALSE, Ca = 0.001))

358



Chapter 12
Multiway ANOVA: factorial and nested designs

After completing this laboratory exercise, you should be able to:

• Use R to do parametric ANOVAs for 2-way factorial designs with replication.

• Use R to do 2-way factorial design ANOVA without replication

• Use R to do parametric ANOVAs for nested designs with replication.

• Use R to do non-parametric 2-way ANOVAs

• Use R to do multiway pairwise comparisons

Be aware that there are a large number of possible ANOVA designs, many of which can be handled by R: this

laboratory is

12.1. R packages and data needed

For this lab you need:

• R packages:

– tidyverse

– multicomp

– car

– effects

• data files:

– Stu2wdat.csv

– Stu2mdat.csv

359



Chapter 12. Multiway ANOVA: factorial and nested designs

– nr2wdat.csv

– nestdat.csv

– wmcdat2.csv

– wmc2dat2.csv

library(multcomp)

library(car)

library(tidyverse)

library(effects)

12.2. Two-way factorial design with replication

Many experiments are designed to investigate the joint effects of several different factors: in a two-way ANOVA, we

examine the effect of two factors, but in principle the analysis can be extended to three, four or even five factors,

although interpreting the results from 4- and 5-way ANOVAs can be very difficult.

Suppose that we are interested in the effects of two factors: location (Cumberland House and The Pas) and sex

(male or female) on sturgeon size (data can be found in Stu2wdat.csv). Note that because the sample sizes are not

the same for each group, this is an unbalanced design. Note also that there are missing data for some of the variables,

meaning that not every measurement was made on every fish.

12.2.1. Fixed effects ANOVA (Model I)

• Begin by having a look at the data by generating box plots of rdwght for sex and location from the file

Stu2wdat.csv .

LIGHTBULB Solution

Stu2wdat <- read.csv("data/Stu2wdat.csv")

ggplot(Stu2wdat, aes(x = sex, y = rdwght)) +

geom_boxplot(notch = TRUE) +

facet_grid(~location)

Warning: Removed 4 rows containing non-finite outside the scale range

(`stat_boxplot()`).

360



12.2. Two-way factorial design with replication

CUMBERLAND  THE_PAS     

FEMALE      MALE        FEMALE      MALE        

25

50

75

sex

rd
w

gh
t

From this, it appears as though females might be larger at both locations. It’s difficult to get an idea of whether fish

differ in size between the two locations. The presence of outliers on these plots suggests there might be problems

meeting normality assumptions for the residuals.

• Generate summary statistics for rdwght by sex and location .

Stu2wdat %>%

group_by(sex, location) %>%

summarise(

mean = mean(rdwght, na.rm = TRUE), sd = sd(rdwght, na.rm = TRUE), n = n()

)

`summarise()` has grouped output by 'sex'. You can override using the `.groups`

argument.

sex location mean sd n

FEMALE CUMBERLAND 27.37347 9.331438 51

FEMALE THE_PAS 27.97717 12.533105 55

MALE CUMBERLAND 22.14118 4.789390 34

MALE THE_PAS 20.64652 9.917066 46

361



Chapter 12. Multiway ANOVA: factorial and nested designs

sex location mean sd n

The summary statistics confirm our interpretation of the box plots: females appear to be larger than males, and

differences in fish size between locations are small.

• Using the file Stu2wdat.csv , do a two-way factorial ANOVA:

# Fit anova model and plot residual diagnostics

# but first, save current par and set graphic page to hold 4 graphs

opar <- par(mfrow = c(2, 2))

anova.model1 <- lm(rdwght ~ sex + location + sex:location,

contrasts = list(sex = contr.sum, location = contr.sum),

data = Stu2wdat

)

anova(anova.model1)

Df Sum Sq Mean Sq F value Pr(>F)

sex 1 1839.552607 1839.552607 18.6784735 0.0000257

location 1 4.261586 4.261586 0.0432714 0.8354530

sex:location 1 48.692262 48.692262 0.4944121 0.4828844

Residuals 178 17530.359982 98.485168 NA NA

Exclamation-Triangle Warning

Be careful here. R gives you the sequential sums of squares (Type I) and associated Mean squares and

probabilities. These are not to be trusted unless the design is perfectly balanced. In this case, there are varying

numbers of observations across sex and location combinations and therefore the design is not balanced.

What you want are the partial sums of squares (type III). The easiest way to get them is to use the Anova() function

in the car package (note the subtle difference, Anova() is not the same as anova(), remember case matters in

R.). However, this is not enough by itself. To get the proper values for the type III sums of square, one also needs to

specify contrasts, hence the cryptic contrasts = list(sex = contr.sum,location = contr.sum).

362



12.2. Two-way factorial design with replication

library(car)

Anova(anova.model1, type = 3)

Sum Sq Df F value Pr(>F)

(Intercept) 1.065073e+05 1 1081.4551655 0.0000000

sex 1.745358e+03 1 17.7220422 0.0000405

location 8.778349e+00 1 0.0891337 0.7656296

sex:location 4.869226e+01 1 0.4944121 0.4828844

Residuals 1.753036e+04 178 NA NA

On the basis of the ANOVA, there is no reason to reject two null hypotheses: (1) that the effect of sex (if any) does

not depend on location (no interaction), and (2) that there is no difference in the size of sturgeon (pooled over sex )

between the two locations . On the other hand, we reject the null hypothesis that there is no difference in size between

male and female sturgeon (pooled over location ), precisely as expected from the graphs.

par(mfrow = c(2, 2))

plot(anova.model1)

22 24 26 28

−
20

Fitted values

R
es

id
ua

ls Residuals vs Fitted
101

2471

−2 −1 0 1 2

0

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals
101

2471

22 24 26 28

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
101

2471

0.000 0.010 0.020 0.030

−
2

LeverageS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance

Residuals vs Leverage
101

2471

Figure 12.1.: Checking model assumptions for ANOVA model1

363



Chapter 12. Multiway ANOVA: factorial and nested designs

As usual, we cannot accept the above results without first ensuring that the assumptions of ANOVA are met.

Examination of the residuals plots above shows that the residuals are reasonably normally distributed, with the

exception of three potential outliers flagged on the QQ plot (cases 101, 24, & 71; the latter two are on top of one

another). However, Cook’s distances are not large for these (the 0.5 contour is not even visible on the plot), so there

is little indication that these are a concern.The residuals vs fit plot shows that the spread of residuals is about equal

over the range of the fitted values, again with the exception of a few cases. When we test for normality of residuals

we get:

shapiro.test(residuals(anova.model1))

Shapiro-Wilk normality test

data: residuals(anova.model1)

W = 0.87213, p-value = 2.619e-11

So, there is evidence of non-normality in the residuals.

We will use the Levene’s test to examine the assumption of homogeneity of variances, just as we did with the 1-way

anova.

leveneTest(rdwght ~ sex * location, data = Stu2wdat)

Df F value Pr(>F)

group 3 3.852621 0.0105483

178 NA NA

If the assumption of homogeneity of variances was valid, we would be accepting the null that the mean of the absolute

values of residuals does not vary among levels of sex and location (i.e., group ). The above table shows that the

hypothesis is rejected and we conclude there is evidence of heteroscedascticity. All in all, there is some evidence

that several important assumptions have been violated. However, whether these violations are sufficiently large to

invalidate our conclusions remains to be seen.

364



12.2. Two-way factorial design with replication

Fire Exercise

Repeat this procedure using the data file Stu2mdat.Rdata . Now what do you conclude? Suppose you wanted to

compare the sizes of males and females: in what way would these comparisons differ between Stu2wdat.Rdata

and Stu2mdat.Rdata ?

LIGHTBULB Solution

Stu2mdat <- read.csv("data/Stu2mdat.csv")

anova.model2 <- lm(

formula = rdwght ~ sex + location + sex:location,

contrasts = list(sex = contr.sum, location = contr.sum),

data = Stu2mdat

)

summary(anova.model2)

Anova(anova.model2, type = 3)

Call:

lm(formula = rdwght ~ sex + location + sex:location, data = Stu2mdat,

contrasts = list(sex = contr.sum, location = contr.sum))

Residuals:

Min 1Q Median 3Q Max

-15.917 -6.017 -0.580 4.445 65.743

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.5346 0.7461 32.885 < 2e-16 ***

sex1 -0.5246 0.7461 -0.703 0.483

location1 0.2227 0.7461 0.299 0.766

sex1:location1 3.1407 0.7461 4.210 4.05e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

365



Chapter 12. Multiway ANOVA: factorial and nested designs

Residual standard error: 9.924 on 178 degrees of freedom

(4 observations deleted due to missingness)

Multiple R-squared: 0.09744, Adjusted R-squared: 0.08223

F-statistic: 6.405 on 3 and 178 DF, p-value: 0.0003817

Note that in this case, we see that at Cumberland House, females are larger than males, whereas the opposite is true

in The Pas (you can confirm this observation by generating summary statistics). What happens with the ANOVA

(remember, you want Type III sum of squares)?

Sum Sq Df F value Pr(>F)

(Intercept) 1.065073e+05 1 1081.4551655 0.0000000

sex 4.869226e+01 1 0.4944121 0.4828844

location 8.778349e+00 1 0.0891337 0.7656296

sex:location 1.745358e+03 1 17.7220422 0.0000405

Residuals 1.753036e+04 178 NA NA

In this case, the interaction term sex:location is significant but the main effects are not significant.

• You might find it useful here to generate plots for the two data files to compare the interactions between sex

and location. The effect plot shows the relationship between means for each combination of factors (also

called cell means). Generate an effect plot for the two models using the allEffects() command from the

effects package:

library(effects)

allEffects(anova.model1)

model: rdwght ~ sex + location + sex:location

sex*location effect

location

sex CUMBERLAND THE_PAS

FEMALE 27.37347 27.97717

MALE 22.14118 20.64652

366



12.2. Two-way factorial design with replication

plot(allEffects(anova.model1), "sex:location")

sex*location effect plot

sex

rd
w

gh
t

18

20

22

24

26

28

30

FEMALE      MALE        

 = location CUMBERLAND  

FEMALE      MALE        

 = location THE_PAS     

Figure 12.2.: Effet du sexe et du lieu sur le poids des esturgeons

allEffects(anova.model2)

model: rdwght ~ sex + location + sex:location

sex*location effect

location

sex CUMBERLAND THE_PAS

FEMALE 27.37347 20.64652

MALE 22.14118 27.97717

plot(allEffects(anova.model2), "sex:location")

367



Chapter 12. Multiway ANOVA: factorial and nested designs

sex*location effect plot

sex

rd
w

gh
t

18

20

22

24

26

28

30

FEMALE      MALE        

 = location CUMBERLAND  

FEMALE      MALE        

 = location THE_PAS     

Figure 12.3.: Effet du sexe et du lieu sur le poids des esturgeons

There is a very large difference between the results from Stu2wdat and Stu2mdat. In the former case, because

there is no significant interaction, we can essentially pool over the levels of factor 1 (sex, say) to test for the effects

of location , or over the levels of factor 2 (location) to test for the effects of sex . In fact, if we do so and simply

run a one-way ANOVA on the Stu2wdat data with sex as the grouping variable, we get:

Anova(aov(rdwght ~ sex, data = Stu2wdat), type = 3)

Sum Sq Df F value Pr(>F)

(Intercept) 78191.023 1 800.43979 0.00e+00

sex 1839.553 1 18.83146 2.38e-05

Residuals 17583.314 180 NA NA

Note that here the residual sum of squares (17583) is only slightly higher than for the 2-way model (17530), simply

because, in the 2-way model, only a small fraction of the explained sums of squares is due to the location main effect

or the sex:LOCATION interaction. On the other hand, if you try the same trick with stu2mdat, you get:

Anova(aov(rdwght ~ sex, data = Stu2mdat), type = 3)

368



12.2. Two-way factorial design with replication

Sum Sq Df F value Pr(>F)

(Intercept) 55251.2030 1 515.043549 0.0000000

sex 113.3992 1 1.057091 0.3052593

Residuals 19309.4672 180 NA NA

Here, the residuals sum of squares (19309) is much larger than in the 2-way model (17530), because most of the

explained sums of squares is due to the interaction. Note that if we did this, we would conclude that male and female

sturgeons don’t differ in size. But in fact they do: it’s just that the difference is in different directions, depending on

location. This is why it is always dangerous to try and make too much of main effects in the presence of interactions!

12.2.2. Mixed effects ANOVA (Model III)

We have neglected an important component in the above analyses, and that is related to the type of ANOVA model we

wish to run. In this example, Location could be considered a random effect, whereas sex is a fixed effect (because it

is “fixed” biologically), and so this model could be treated as a mixed model (Model III) ANOVA. Note that in these

analyses, R treats analyses by default as Model I ANOVA, so that the main effects and the interaction are tested over

the residuals mean square. Recall, however, that in a Model III ANOVA, main effects are tested over the interaction

mean square or the pooled interaction mean square and residual mean square (depending on which statistician you

consult!)

• Working with the Stu2wdat data, rebuild the ANOVA table for rdwght for the situation in which location

is a random factor and sex is a fixed factor. To do this, you need to recalculate the F-ratio for sex using the

sex:location interaction mean square instead of the residual mean square. This is most easily accomplished

by hand, making sure you are working with the Type III Sums of squares ANOVA table.

LIGHTBULB Solution

Anova(anova.model1, type = 3)

Sum Sq Df F value Pr(>F)

(Intercept) 1.065073e+05 1 1081.4551655 0.0000000

sex 1.745358e+03 1 17.7220422 0.0000405

location 8.778349e+00 1 0.0891337 0.7656296

sex:location 4.869226e+01 1 0.4944121 0.4828844

369



Chapter 12. Multiway ANOVA: factorial and nested designs

Sum Sq Df F value Pr(>F)

Residuals 1.753036e+04 178 NA NA

For sex, the new ratio of mean squares is

𝐹 = (1745/1)
(49/1)

= 35.6

To assign a probability to the new F-value, enter the following in the commands window: pf(F, df1, df2,

lower.tail = FALSE) , where F is the newly calculated F-value, and df1 and df2 are the degrees of freedom

of the numerator (sex) and denominator (SEX:location), respectively.

pf(35.6, 1, 1, lower.tail = FALSE)

[1] 0.1057152

Note that the p value for sex is now non-significant. This is because the error MS of the initial ANOVA is smaller

than the interaction MS, but mostly because the number of degrees of freedom of the denominator of the F test has

dropped from 178 to 1. In general, a drop in the denominator degrees of freedom makes it much more difficult to

reach significance.

INFO Note

Mixed model which are a generalisation of mixed-effect ANOVA are now really developped and are to be

favoured intead of doing it by hand.

12.3. 2-way factorial ANOVA without replication

In some experimental designs, there are no replicates within data cells: perhaps it is simply too expensive to obtain

more than one datum per cell. A 2-way ANOVA is still possible under these circumstances, but there is an important

limitation.

Exclamation-Triangle Warning

Because there is no replication within cells, there is no error variance: we have simply a row sum of squares,

a column sum of squares, and a remainder sum of squares. This has important implications: if there is an

370



12.3. 2-way factorial ANOVA without replication

interaction in a Model III ANOVA, only the fixed effect can be tested (over the remainder MS); for Model

I ANOVAs, or for random effects in Model III ANOVAs, it is not appropriate to test main effects over the

remainder unless we are sure there is no interaction.

A limnologist studying Round Lake in Algonquin Park takes a single temperature ( temp ) reading at 10 different

depths ( depth , in m) at four times ( date) over the course of the summer. Her data are shown in Nr2wdat.csv.

• Do a two-way unreplicated ANOVA using temp as the dependent vari able, date and depth as the factor

variables (you will need to recode depth to tell R to treat this variable as a factor). Note that there is no

interaction term included in this model.

nr2wdat <- read.csv("data/nr2wdat.csv")

nr2wdat$depth <- as.factor(nr2wdat$depth)

anova.model4 <- lm(temp ~ date + depth, data = nr2wdat)

Anova(anova.model4, type = 3)

Sum Sq Df F value Pr(>F)

(Intercept) 1511.9940 1 125.565158 0.0e+00

date 591.1467 3 16.364138 2.9e-06

depth 1082.8202 9 9.991552 1.5e-06

Residuals 325.1207 27 NA NA

Assuming that this is a Model III ANOVA ( date random, depth fixed), what do you conclude? (Hint: you may

want to generate an interaction plot of temp versus depth and month, just to see what’s going on.)

interaction.plot(nr2wdat$depth, nr2wdat$date, nr2wdat$temp)

371



Chapter 12. Multiway ANOVA: factorial and nested designs

5
10

15
20

25

nr2wdat$depth

m
ea

n 
of

  n
r2

w
da

t$
te

m
p

0 1 2 3 4 5 6 9 12

   nr2wdat$date

AUG1        
JULY1       
JUNE1       
MAY1        

Figure 12.4.: Effet du mois et de la profondeur sur la température

There is a highly significant decrease in temperature as depth increases. To test the effect of month (the (assumed)

random factor), we must assume that there is no interaction between depth and month, i.e. that the change in

temperature with depth is the same for each month. This is a dubious assumption: if you plot temperature against

depth for each month, you should see that the temperature profile becomes increasingly non-linear as the summer

progresses (i.e. the thermocline develops), from almost a linear decline in early spring to what amounts to a step

decline in August. In other words, the relationship between temperature and depth does change with month, so that if

you were to use the above fitted model to estimate, say, the temperature at a depth of 5 m in July, you would not get a

particularly good estimate.

In terms of residual diagnostics, have a look at the residuals probability plot and residuals vs fitted values plot.

par(mfrow = c(2, 2))

plot(anova.model4)

372



12.3. 2-way factorial ANOVA without replication

0 5 10 15 20
−

6

Fitted values

R
es

id
ua

ls Residuals vs Fitted
1089

−2 −1 0 1 2

−
1

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals
1089

0 5 10 15 20

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
1089

−
2

Factor Level CombinationsS
ta

nd
ar

di
ze

d 
re

si
du

al
s

AUG1        MAY1        
date :

Constant Leverage:
 Residuals vs Factor Levels

1089

Figure 12.5.: Conditions d’applications du modèle anova.model4

shapiro.test(residuals(anova.model4))

Shapiro-Wilk normality test

data: residuals(anova.model4)

W = 0.95968, p-value = 0.1634

Testing the residuals for normality, we get p = 0.16, so that the normality assumption seems to be O.K. In terms of

heteroscedasticity, we can only test among months, using depths as replicates (or among depths using months as

replicates). Using depths as replicates within months, we find

leveneTest(temp ~ date, data = nr2wdat)

Warning in leveneTest.default(y = y, group = group, ...): group coerced to

factor.

373



Chapter 12. Multiway ANOVA: factorial and nested designs

Df F value Pr(>F)

group 3 17.9789 3e-07

36 NA NA

So there seems to be some problem here, as can be plainly seen in the above plot of residuals vs fit. All in all, this

analysis is not very satisfactory: there appears to be some problems with the assumptions, and the assumption of no

interaction between depth and date would appear to be invalid.

12.4. Nested designs

A common experimental design occurs when each major group (or treatment) is divided into randomly chosen

subgroups. For example, a geneticist interested in the effects of genotype on desiccation resistance in fruit flies might

conduct an experiment with larvae of three different genotypes. For each genotype (major group), she sets up three

environmental chambers (sub-groups, replicates within groups) with a fixed temperature humidity regime, and in

each chamber, she has five larvae for which she records the number of hours each larvae survived.

• The file Nestdat.csv contains the results of just such an experi ment. The file lists three variables: genotype

, chamber and survival . Run a nested ANOVA with survival as the dependent variable, genotype/chamber as

the independent variables (this is the shorthand notation for a chamber effect nested under genotype).

nestdat <- read.csv("data/nestdat.csv")

nestdat$chamber <- as.factor(nestdat$chamber)

nestdat$genotype <- as.factor(nestdat$genotype)

anova.nested <- lm(survival ~ genotype / chamber, data = nestdat)

What do you conclude from this analysis? What analysis would (should) you do next? (Hint: if there is a non-

significant effect of chambers within genotypes, then you can increase the power of between-genotype comparisons

by pooling over chambers within genotypes, although not everyone (Dr. Rundle included) agrees with such pooling.)

Do it! Make sure you check your assumptions!

374



12.4. Nested designs

LIGHTBULB Solution

anova(anova.nested)

Df Sum Sq Mean Sq F value Pr(>F)

genotype 2 2952.22044 1476.110222 292.608079 0.0000000

genotype:chamber 6 40.65467 6.775778 1.343157 0.2638893

Residuals 36 181.60800 5.044667 NA NA

Conditions d’applications du modèle anova.nested

par(mfrow = c(2, 2))

plot(anova.nested)

40 45 50 55

−
4

Fitted values

R
es

id
ua

ls Residuals vs Fitted
37 26

38

−2 −1 0 1 2

−
1

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals
3726

38

40 45 50 55

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
37 2638

−
2

Factor Level CombinationsS
ta

nd
ar

di
ze

d 
re

si
du

al
s

aa Aa AA
genotype :

Constant Leverage:
 Residuals vs Factor Levels

37 26

38

Figure 12.6.: Conditions d’applications du modèle anova.nested

We conclude from this analysis that there is no (significant) variation among chambers within genotypes, but that the

null hypothesis that all genotypes have the same dessiccation resistance (as measured by survival) is rejected (Test of

genotype using MS genotype:chamber as denominator: F = 1476.11/6.78 = 217.7153, P<0.0001). In other words,

genotypes differ in their survival.

Since the chambers within genotypes effect is non-significant, we may want to pool over chambers to increase our

375



Chapter 12. Multiway ANOVA: factorial and nested designs

degrees of freedom:

anova.simple <- lm(survival ~ genotype, data = nestdat)

anova(anova.simple)

Df Sum Sq Mean Sq F value Pr(>F)

genotype 2 2952.2204 1476.110222 278.9341 0

Residuals 42 222.2627 5.291968 NA NA

Thus, we conclude that there is significant variation among the three genotypes in dessiccation resistance.

A box plot of survival across genotypes shows clearly that there is significant variation among the three genotypes in

dessiccation resistance. This can be combined with a formal Tukey multiple comparison test:

par(mfrow = c(1, 1))

# Compute and plot means and Tukey CI

means <- glht(anova.simple, linfct = mcp(

genotype =

"Tukey"

))

cimeans <- cld(means)

# use sufficiently large upper margin

old.par <- par(mai = c(1, 1, 1.25, 1))

# plot

plot(cimeans, las = 1) # las option to put y-axis labels as God intended them

376



12.4. Nested designs

aa Aa AA

35
40
45
50
55
60

genotype

su
rv

iv
al

a 
  
  

  
b 
  

  
  
c 

Figure 12.7.: Effet du genotype sur la résistance à la dessication avec un test de Tukey

So, we conclude from the Tukey analysis and plot that dessiccation resistance (R) , as measured by larval survival

under hot, dry conditions, varies significantly among all three genotypes with R(AA) > R(Aa) > R(aa).

Before concluding this, however, we must test the assumptions. Here are the residual plots and diagnostics for the

one-way (unnested) design:

LIGHTBULB Solution

par(mfrow = c(2, 2))

plot(anova.simple)

377



Chapter 12. Multiway ANOVA: factorial and nested designs

40 45 50 55
−

4

Fitted values

R
es

id
ua

ls Residuals vs Fitted
726

11

−2 −1 0 1 2

−
2

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals
726

11

40 45 50 55

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
726 11

−
2

Factor Level CombinationsS
ta

nd
ar

di
ze

d 
re

si
du

al
s

aa Aa AA
genotype :

Constant Leverage:
 Residuals vs Factor Levels

726

11

Figure 12.8.: Conditions d’applications du modèle anova.simple

So, all the assumptions appear to be valid, and the conclusion reached above still holds. Note that if you compare

the residual mean squares of the nested and one-way ANOVAs (5.04 vs 5.29), they are almost identical. This is not

surprising, given the small contribution of the chamber %in% genotype effect to the explained sum of squares.

12.5. Two-way non-parametric ANOVA

Two-way non-parametric ANOVA is an extension of the non-parametric one-way methods discussed previously. The

basic procedure is to rank all the data in the sample from smallest to largest, then carry out a 2-way ANOVA on the

ranks. This can be done either for replicated or unreplicated data.

Using the data file Stu2wdat.csv , do a two-factor ANOVA to examine the effects of sex and location on

rank(rdwght).

aov.rank <- aov(

rank(rdwght) ~ sex * location,

contrasts = list(

sex = contr.sum, location = contr.sum

),

378



12.5. Two-way non-parametric ANOVA

data = Stu2wdat

)

The Scheirer-Ray-Hare extension of the Kruskall-Wallis test is done by computing a statistic H given by the effect

sums of squares (SS) divided by the total MS. The latter can be calculated as the variance of the ranks. We compute

an H statistic for each term. The H-statistics are then compared to a theoretical 𝜒2 (chi-square) distribution using

the command line: pchisq(H, df, lower.tail = FALSE) , where H and df are the calculated H-statistics and

associated degrees of freedom, respectively.

• Use the ANOVA table based on ranks to test the effects of sex and on rdwght. What do you conclude? How

does this result compare with the result obtained with the parametric 2-way ANOVA done before?

Anova(aov.rank, type = 3)

Sum Sq Df F value Pr(>F)

(Intercept) 1499862.414 1 577.8672627 0.0000000

sex 58393.631 1 22.4979086 0.0000042

location 1128.212 1 0.4346776 0.5105359

sex:location 1229.819 1 0.4738251 0.4921091

Residuals 472383.499 182 NA NA

To calculate the Scheirer-Ray-Hare extension to the Kruskall-Wallis test, you must first calculate the total mean

square (MS), i.e. the variance of the ranked data. In this case, there are 186 observations, their ranks are therefore

the series 1, 2, 3, …, 186. The variance can be calculated simply as var(1:186) (Isn’t R neat? Cryptic maybe, but

neat). So we can compute the H statistic for each term:

Hsex <- 58394 / var(1:186)

Hlocation <- 1128 / var(1:186)

Hsexloc <- 1230 / var(1:186)

And convert these statistics into p-values:

379



Chapter 12. Multiway ANOVA: factorial and nested designs

# sex

Hsex

[1] 20.14628

pchisq(Hsex, 1, lower.tail = FALSE)

[1] 7.173954e-06

# location

Hlocation

[1] 0.3891668

pchisq(Hlocation, 1, lower.tail = FALSE)

[1] 0.5327377

# sex:location

Hsexloc

[1] 0.4243574

pchisq(Hsexloc, 1, lower.tail = FALSE)

[1] 0.5147707

Note that these results are the same as those obtained in our original two-way parametric ANOVA. Despite the

reduced power, we still find significant differences between the sexes, but still no interaction and no effect due to

location.

There is, however, an important difference. Recall that in the original parametric ANOVA, there was a significant

effect of sex when we considered the problem as a Model I ANOVA. However, if we consider it as Model III, the

significant sex effect could in principle disappear, because the df associated with the interaction MS are much smaller

than the df associated with the Model I error MS. In this case, however, the interaction MS is about half that of the

error MS. So, the significant sex effect becomes even more significant if we analyze the problem as a Model III

ANOVA. Once again, we see the importance of specifying the appropriate ANOVA design.

380



12.6. Multiple comparisons

12.6. Multiple comparisons

Further hypothesis testing in multiway ANOVAs depends critically on the outcome of the initial ANOVA. If you are

interested in comparing groups of marginal means (that is, means of treatments for one factor pooled over levels of

the other factor, e.g., between male and female sturgeon pooled over location), this can be done exactly as outlined

for multiple comparisons for one-way ANOVAs. For comparison of individual cell means, you must specify the

interaction as the group variable.

The file wmcdat2.csv shows measured oxygen consumption ( o2cons ) of two species ( species = A, B)) of

limpets at three different concentrations of seawater ( conc = 100, 75, 50%) taken from Sokal and Rohlf, 1995,

p. 332.

• Run a 2-way factorial ANOVA on wmcdat2 data, using o2cons as the dependent variable and species and

conc as the factors. What do you conclude?

LIGHTBULB Solution

wmcdat2 <- read.csv("data/wmcdat2.csv")

wmcdat2$species <- as.factor(wmcdat2$species)

wmcdat2$conc <- as.factor(wmcdat2$conc)

anova.model5 <- lm(o2cons ~ species * conc, data = wmcdat2)

Anova(anova.model5, type = 3)

The ANOVA table is shown below. Technically, because the sample sizes in individual cells are rather small,

this analysis should be repeated using a non-parametric ANOVA. For the moment, let’s stick with the parametric

analysis.

Sum Sq Df F value Pr(>F)

(Intercept) 1185.601512 1 124.0164931 0.0000000

species 0.093025 1 0.0097306 0.9218903

conc 74.896658 2 3.9171766 0.0275505

species:conc 23.926200 2 1.2513662 0.2965616

Residuals 401.521300 42 NA NA

Look at the diagnostic plots:

381



Chapter 12. Multiway ANOVA: factorial and nested designs

LIGHTBULB Solution

par(mfrow = c(2, 2))

plot(anova.model5)

8 9 10 11 12

−
5

Fitted values

R
es

id
ua

ls Residuals vs Fitted
19

42

7

−2 −1 0 1 2

−
2

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals
19

42

7

8 9 10 11 12

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
19427

−
2

Factor Level CombinationsS
ta

nd
ar

di
ze

d 
re

si
du

al
s

A B
species :

Constant Leverage:
 Residuals vs Factor Levels

19

42

7

Homoscedasticity looks ok, but normality less so.. Testing for normality, we get:

LIGHTBULB Solution

shapiro.test(residuals(anova.model5))

Shapiro-Wilk normality test

data: residuals(anova.model5)

W = 0.93692, p-value = 0.01238

So there is evidence of non-normality, but otherwise everything looks O.K. Since the ANOVA is relatively robust

with respect to non-normality, we proceed, but if we wanted to reassure ourselves, we could run a non-parametric

ANOVA, and get the same answer.

• On the basis of the ANOVA results obtained above, which means would you proceed to compare? Why?

382



12.6. Multiple comparisons

LIGHTBULB Solution

Need to add an explnation here

Overall, we conclude that there are no differences among species, and that the effect of concentration does not depend

on species (no interaction). Since there is no interaction and no main effect due to species, the only comparison of

interest is among salinity concentrations:

# fit simplified model

anova.model6 <- aov(o2cons ~ conc, data = wmcdat2)

# Make Tukey multiple comparisons

TukeyHSD(anova.model6)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = o2cons ~ conc, data = wmcdat2)

$conc

diff lwr upr p adj

75-50 -4.63625 -7.321998 -1.9505018 0.0003793

100-50 -3.25500 -5.940748 -0.5692518 0.0141313

100-75 1.38125 -1.304498 4.0669982 0.4325855

par(mfrow = c(1, 1))

# Graph of all comparisons for conc

tuk <- glht(anova.model6, linfct = mcp(conc = "Tukey"))

# extract information

tuk.cld <- cld(tuk)

# use sufficiently large upper margin

old.par <- par(mai = c(1, 1, 1.25, 1))

# plot

plot(tuk.cld)

383



Chapter 12. Multiway ANOVA: factorial and nested designs

50 75 100

5
10

15

conc

o2
co

ns

a 
  

  
b 

  
b 

Figure 12.9.: Comparaison de Tukey des moyennes de consommation d’oxygèn en fonction del la concentration

par(old.par)

So there is evidence of a significant difference in oxygen consumption at a reduction in salinity to 50% of regular

seawater, but not at a reduction of only 25%.

• Repeat the analysis described above using wmc2dat2.csv . How do your results compare with those obtained

for wmcdat2.csv ?

LIGHTBULB Solution

wmc2dat2 <- read.csv("data/wmc2dat2.csv")

wmc2dat2$species <- as.factor(wmc2dat2$species)

wmc2dat2$conc <- as.factor(wmc2dat2$conc)

anova.model7 <- lm(o2cons ~ species * conc, data = wmc2dat2)

Using wmc2dat2.csv,we get:

Sum Sq Df F value Pr(>F)

(Intercept) 343.08901 1 36.213216 0.0000004

species 133.51802 1 14.092894 0.0005286

384



12.6. Multiple comparisons

Sum Sq Df F value Pr(>F)

conc 66.75916 2 3.523231 0.0385011

species:conc 168.15120 2 8.874222 0.0006101

Residuals 397.91380 42 NA NA

Here there is a large interaction effect, and consequently, there is no point in comparing marginal means. This is

made clear by examining an interaction plot:

with(wmc2dat2, interaction.plot(conc, species, o2cons))

7
8

9
11

conc

m
ea

n 
of

  o
2c

on
s

50 75 100

   species

A
B

• Working still with the wmc2dat2 data set, compare individual cell means (6 in all), with the Bonferonni

adjustment. To do this, it is helpful to create a new variable to indicate all the combinations of species and

conc:

wmc2dat2$species.conc <- as.factor(paste0(wmc2dat2$species, wmc2dat2$conc))

Then we can conduct pairwise bonferroni comparisons:

with(wmc2dat2, pairwise.t.test(o2cons, species.conc, p.adj = "bonf"))

385



Chapter 12. Multiway ANOVA: factorial and nested designs

Pairwise comparisons using t tests with pooled SD

data: o2cons and species.conc

A100 A50 A75 B100 B50

A50 0.1887 - - - -

A75 1.0000 1.0000 - - -

B100 0.7223 1.0000 1.0000 - -

B50 1.0000 0.0079 0.0929 0.0412 -

B75 0.6340 1.0000 1.0000 1.0000 0.0350

P value adjustment method: bonferroni

These comparisons are a little more difficult to interpret, but the analysis essentially examines for differences among

seawater concentrations within species A and for differences among concentrations within species B. We see here

that the o2Cons at 50% seawater for species B is significantly different from that of 75% and 100% seawater for

species B, whereas there are no significant differences in o2cons for species A across all seawater concentrations.

I find these outputs rather unsatisfying because they show only p-values, but no indication of effect size. One can

get both the conclusion from the multiple comparison procedure and an indication of effect size from the graph

produced with the following code:

# fit one-way anova comparing all combinations of species.conc combinations

anova.modelx <- aov(o2cons ~ species.conc, data = wmc2dat2)

tuk2 <- glht(anova.modelx, linfct = mcp(species.conc = "Tukey"))

# extract information

tuk2.cld <- cld(tuk2)

# use sufficiently large upper margin

old.par <- par(mai = c(1, 1, 1.25, 1))

# plot

plot(tuk2.cld)

386



12.7. Test de permutation pour l’ANOVA à deux facteurs de classification

A100 A50 A75 B100 B50 B75

4
8

12
16

species.conc

o2
co

ns

a 
b 

  
b 

a 
b 

  
b 

a 
  

  
b 

par(old.par)

Note that in this analysis, we have used the error MS = 9.474 from the original model to contrast cell means. Recall,

however, that this assumes that in fact we are dealing with a Model I ANOVA, which may or may not be the case (

conc is certainly a fixed factor, but species might be either fixed or random).

12.7. Test de permutation pour l’ANOVA à deux facteurs de classification

When data do not meet the assumptions of the parametric analysis in two- and multiway ANOVA, as an alternative to

the non-parametric ANOVA, it is possible to run permutation tests to calculate p-values. The lmPerm package does

this easily.

#######################################################################

## lmPerm version of permutation test

library(lmPerm)

# for generality, copy desired dataframe to mydata

# and model formula to myformula

mydata <- Stu2wdat

myformula <- as.formula("rdwght ~ sex+location+sex:location")

# Fit desired model on the desired dataframe

387



Chapter 12. Multiway ANOVA: factorial and nested designs

mymodel <- lm(myformula, data = mydata)

# Calculate permutation p-value

anova(lmp(myformula, data = mydata, perm = "Prob", center = FALSE, Ca = 0.001))

lmPerm was orphaned for a while and the code below, while clunkier, provided an alternative way of doing it. You

would have to adapt it for other situations.

###########################################################

# Permutation test for two way ANOVA

# Ter Braak creates residuals from cell means and then permutes across

# all cells

# This can be accomplished by taking residuals from the full model

# modified from code written by David C. Howell

# http://www.uvm.edu/~dhowell/StatPages/More_Stuff/Permutation%20Anova/PermTestsAnova.html

nreps <- 500

dependent <- Stu2wdat$rdwght

factor1 <- as.factor(Stu2wdat$sex)

factor2 <- as.factor(Stu2wdat$location)

my.dataframe <- data.frame(dependent, factor1, factor2)

my.dataframe.noNA <- my.dataframe[complete.cases(my.dataframe), ]

mod <- lm(dependent ~ factor1 + factor2 + factor1:factor2,

data = my.dataframe.noNA

)

res <- mod$residuals

TBint <- numeric(nreps)

TB1 <- numeric(nreps)

TB2 <- numeric(nreps)

ANOVA <- summary(aov(mod))

cat(

" The standard ANOVA for these data follows ",

"\n"

)

F1 <- ANOVA[[1]]$"F value"[1]

F2 <- ANOVA[[1]]$"F value"[2]

388



12.7. Test de permutation pour l’ANOVA à deux facteurs de classification

Finteract <- ANOVA[[1]]$"F value"[3]

print(ANOVA)

cat("\n")

cat("\n")

TBint[1] <- Finteract

for (i in 2:nreps) {

newdat <- sample(res, length(res), replace = FALSE)

modb <- summary(aov(newdat ~ factor1 + factor2 +

factor1:factor2,

data = my.dataframe.noNA

))

TBint[i] <- modb[[1]]$"F value"[3]

TB1[i] <- modb[[1]]$"F value"[1]

TB2[i] <- modb[[1]]$"F value"[2]

}

probInt <- length(TBint[TBint >= Finteract]) / nreps

prob1 <- length(TB1[TB1 >= F1]) / nreps

prob2 <- length(TB2[TB1 >= F2]) / nreps

cat("\n")

cat("\n")

print("Resampling as in ter Braak with unrestricted sampling

of cell residuals. ")

cat(

"The probability for the effect of Interaction is ",

probInt, "\n"

)

cat(

"The probability for the effect of Factor 1 is ",

prob1, "\n"

)

cat(

"The probability for the effect of Factor 2 is ",

prob2, "\n"

389



Chapter 12. Multiway ANOVA: factorial and nested designs

)

12.8. Bootstrap for two-way ANOVA

In most cases, permutation tests will be more appropriate than bootstrap in ANOVA designs. However, for the sake

of completedness, I have a snippet of code to do bootstrap for you::

############################################################

###########

# Bootstrap for two-way ANOVA

# You possibly want to edit bootfunction.mod1 to return other values

# Here it returns the standard coefficients of the fitted model

# Requires boot library

#

nreps <- 5000

dependent <- Stu2wdat$rdwght

factor1 <- as.factor(Stu2wdat$sex)

factor2 <- as.factor(Stu2wdat$location)

my.dataframe <- data.frame(dependent, factor1, factor2)

my.dataframe.noNA <- my.dataframe[complete.cases(my.dataframe), ]

library(boot)

# Fit model on observed data

mod1 <- aov(dependent ~ factor1 + factor2 + factor1:factor2,

data = my.dataframe.noNA

)

# Bootstrap 1000 time using the residuals bootstraping methods to

# keep the same unequal number of observations for each level of the indep. var.

fit <- fitted(mod1)

e <- residuals(mod1)

X <- model.matrix(mod1)

bootfunction.mod1 <- function(data, indices) {

390



12.8. Bootstrap for two-way ANOVA

y <- fit + e[indices]

bootmod <- lm(y ~ X)

coefficients(bootmod)

}

bootresults <- boot(my.dataframe.noNA, bootfunction.mod1,

R = 1000

)

bootresults

## Calculate 90% CI and plot bootstrap estimates separately for each model parameter

boot.ci(bootresults, conf = 0.9, index = 1)

plot(bootresults, index = 1)

boot.ci(bootresults, conf = 0.9, index = 3)

plot(bootresults, index = 3)

boot.ci(bootresults, conf = 0.9, index = 4)

plot(bootresults, index = 4)

boot.ci(bootresults, conf = 0.9, index = 5)

plot(bootresults, index = 5)

391



Chapter 13
Multiple regression

After completing this laboratory exercise, you should be able to:

• Use R to fit a multiple regression model, and compare the adequacy of several models using inferential and

information theoretic criteria

• Use R to test hypotheses about the effects of different independent variables on the dependent variable of

interest.

• Use R to evaluate multicollinearity among (supposedly) independent variables and its effects.

• Use R to do curvilinear (polynomial) regression.

13.1. R packages and data

For this lab you need:

• R packages:

– ggplot2

– car

– lmtest

– simpleboot

– boot

– MuMIn

• data files:

– Mregdat.csv

392



13.2. Points to keep in mind

13.2. Points to keep in mind

Multiple regression models are used in cases where there is one dependent variable and several independent,

continuous variables. In many biological systems, the variable of interest may be influenced by several different

factors, so that accurate description or prediction requires that several independent variables be included in the

regression model. Before beginning, be aware that multiple regression takes time to learn well. Beginners should

keep in mind several important points:

1. An overall regression model may be statistically significant even if none of the individual regression coefficients

in the model are (caused by multicollinearity)

2. A multiple regression model may be “nonsignificant” even though some of the individual coefficients are

“significant” (caused by overfitting)

3. Unless “independent” variables are uncorrelated in the sample, different model selection procedures may yield

different results.

13.3. First look at the data

The file Mregdat.Rdata contains data collected in 30 wetlands in the Ottawa-Cornwall-Kingston area. The data

included are

• the richness (number of species) of:

– birds (bird , and its log transform logbird),

– plants (plant, logpl),

– mammals (mammal, logmam),

– herptiles (herptile, logherp)

– total species richness of all four groups combined (totsp, logtot)

• GPS coordinates of the wetland (lat , long)

• its area (logarea)

• the percentage of the wetland covered by water at all times during the year (swamp)

• the percentage of forested land within 1 km of the wetland (cpfor2)

• the density (in m/hectare) of hard-surface roads within 1 km of the wetland (thtden).

We will focus on herptiles for this exercise, so we better first have a look at how this variable is distributed and

correlated to the potential independent variables:

393



Chapter 13. Multiple regression

mydata <- read.csv("data/Mregdat.csv")

scatterplotMatrix(

~ logherp + logarea + cpfor2 + thtden + swamp,

regLine = TRUE, smooth = TRUE, diagonal = TRUE,

data = mydata

)

logherp

1.
5

0
4

0.4 0.8

1.5 2.5

logarea

cpfor2

20 60 100

0 2 4 6

thtden

0.
4

1.
0

20
80

20 60 100

20
80swamp

Figure 13.1.: Matrice de rélation et densité pour la richesse spécifique des amphibiens et reptiles

13.4. Multiple regression models from scratch

We begin the multiple regression exercise by considering a situation with one dependent variable and three (possibly)

independent variables. First, we will start from scratch and build a multiple regression model based on what we know

from building simple regression models. Next, we will look at automated methods of building multiple regressions

models using simultaneous, forward, and backward stepwise procedures.

Fire Exercise

Using the subset of the Mregdat.csv data file, regress logherp on logarea.

On the basis of the regression, what do you conclude?

394



13.4. Multiple regression models from scratch

model_loga <- lm(logherp ~ logarea, data = mydata)

summary(model_loga)

Call:

lm(formula = logherp ~ logarea, data = mydata)

Residuals:

Min 1Q Median 3Q Max

-0.38082 -0.09265 0.00763 0.10409 0.46977

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.18503 0.15725 1.177 0.249996

logarea 0.24736 0.06536 3.784 0.000818 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1856 on 26 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.3552, Adjusted R-squared: 0.3304

F-statistic: 14.32 on 1 and 26 DF, p-value: 0.0008185

par(mfrow = c(2, 2))

plot(model_loga)

395



Chapter 13. Multiple regression

0.5 0.6 0.7 0.8 0.9 1.0
−

0.
4

Fitted values

R
es

id
ua

ls Residuals vs Fitted
20

86

−2 −1 0 1 2

−
2

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals
20

8 6

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
20 86

0.00 0.10 0.20

−
2

LeverageS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance
1

0.5

Residuals vs Leverage
20

4 12

Figure 13.2.: Checking model asusmptions for regression of logherp as a function of logarea

It looks like there is a positive relationship between herptile species richness and wetland area: the larger the wetland,

the greater the number of species. Note, however, that about 2/3 of the observed variability in species richness among

wetlands is not “explained” by wetland area (R2 = 0.355). Residual analysis shows no major problems with normality,

heteroscedasticity or independence of residuals.

Fire Exercise

Rerun the above regression, this time replacing logarea with cpfor2 as the independent variable, such that

the expression in the formula field reads: logherp ~ cpfor2 . What do you conclude?

LIGHTBULB Solution

model_logcp <- lm(logherp ~ cpfor2, data = mydata)

summary(model_logcp)

Call:

lm(formula = logherp ~ cpfor2, data = mydata)

Residuals:

Min 1Q Median 3Q Max

396



13.4. Multiple regression models from scratch

-0.49095 -0.10266 0.05881 0.16027 0.25159

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.609197 0.104233 5.845 3.68e-06 ***

cpfor2 0.002706 0.001658 1.632 0.115

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2202 on 26 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.09289, Adjusted R-squared: 0.058

F-statistic: 2.662 on 1 and 26 DF, p-value: 0.1148

According to this result, we would accept the null hypothesis, and conclude that there is no relationship between

herptile density and the proportion of forest on adjacent lands. But what happens when we enter both variables into

the regression simultaneously?

Fire Exercise

Rerun the above regression one more time, this time adding both independent variables into the model at once,

such that logherp ~ logarea + cpfor2 . What do you conclude?

LIGHTBULB Solution

model_mcp <- lm(logherp ~ logarea + cpfor2, data = mydata)

summary(model_mcp)

Call:

lm(formula = logherp ~ logarea + cpfor2, data = mydata)

Residuals:

Min 1Q Median 3Q Max

-0.40438 -0.11512 0.01774 0.08187 0.36179

397



Chapter 13. Multiple regression

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.027058 0.166749 0.162 0.872398

logarea 0.247789 0.061603 4.022 0.000468 ***

cpfor2 0.002724 0.001318 2.067 0.049232 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.175 on 25 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.4493, Adjusted R-squared: 0.4052

F-statistic: 10.2 on 2 and 25 DF, p-value: 0.0005774

Now we reject both null hypotheses that the slope of the regression of logherp on logarea is zero and that the slope

of the regression of logherp on cpfor2 is zero.

Why is cpfor2 a significant predictor of logherp in the combined model when it was not significant in the simple

linear model? The answer lies in the fact that it is sometimes necessary to control for one variable in order to detect

the effect of another variable. In this case, there is a significant relationship between logherp and logarea that

masks the relationship between logherp and cpfor2 . When both variables are entered into the model at once, the

effect of logarea is controlled for, making it possible to detect a cpfor2 effect (and vice versa).

Fire Exercise

Run another multiple regression, this time substituting thtden for cpfor2 as an independent variable (logherp

~ logarea + thtden).

LIGHTBULB Solution

model_mden <- lm(logherp ~ logarea + thtden, data = mydata)

summary(model_mden)

Call:

lm(formula = logherp ~ logarea + thtden, data = mydata)

398



13.4. Multiple regression models from scratch

Residuals:

Min 1Q Median 3Q Max

-0.31583 -0.12326 0.02095 0.13201 0.31674

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.37634 0.14926 2.521 0.018437 *

logarea 0.22504 0.05701 3.947 0.000567 ***

thtden -0.04196 0.01345 -3.118 0.004535 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1606 on 25 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.5358, Adjusted R-squared: 0.4986

F-statistic: 14.43 on 2 and 25 DF, p-value: 6.829e-05

In this case we reject the null hypotheses that there are no effects of wetland area ( logarea ) and road density (

thtden ) on herptile richness ( logherp ). Note here that road density has a negative effect on richness, whereas

wetland area and forested area ( cpfor2; results from previous regression) both have positive effects on herptile

richness.

The R2 of this model is even higher than the previous multiple regression model, reflecting a higher correlation

between logherp and thtden than between logherp and cpfor2 (if you run a simple regression between logherp and

thtden and compare it to the cpfor2 regression you should be able to detect this).

Thus far, it appears that herptile richness is related to wetland area ( logarea ), road density ( thtden ), and possibly

forest cover on adjacent lands ( cpfor2 ). But, does it necessarily follow that if we build a regression model with all

three independent variables, that all three will show significant relationships? No, because we have not yet examined

the relationship between Logarea , cpfor2 and thtden . Suppose, for example, two of the variables (say, cpfor2

and thtden ) are perfectly correlated. Then the thtden effect is nothing more than the cpfor2 effect (and vice

versa), so that once we include one or the other in the regression model, none of the remaining variability would be

explained by the third variable.

399



Chapter 13. Multiple regression

Fire Exercise

Fit a regression model with logherp as the dependent variable and logarea , cpfor2 and thtden as the independent

variables. What do you conclude?

LIGHTBULB Solution

model_mtri <- lm(logherp ~ logarea + cpfor2 + thtden, data = mydata)

summary(model_mtri)

Call:

lm(formula = logherp ~ logarea + cpfor2 + thtden, data = mydata)

Residuals:

Min 1Q Median 3Q Max

-0.30729 -0.13779 0.02627 0.11441 0.29582

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.284765 0.191420 1.488 0.149867

logarea 0.228490 0.057647 3.964 0.000578 ***

cpfor2 0.001095 0.001414 0.774 0.446516

thtden -0.035794 0.015726 -2.276 0.032055 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1619 on 24 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.5471, Adjusted R-squared: 0.4904

F-statistic: 9.662 on 3 and 24 DF, p-value: 0.0002291

Several things to note here:

1. The regression coefficient for cpfor2 has become non-significant: once the variability explained by logarea

and thtden is removed, a non-significant part of the remaining variability is explained by cpfor2.

400



13.4. Multiple regression models from scratch

2. The R2 for this model (.547 is only marginally larger than the R2 for the model with only logarea and thtden

(.536, which is again consistent with the non-significant coefficient for cpfor2.

Note also that although the regression coefficient for thtden has not changed much from that obtained when just

thtden and logareawere included in the fitted model (-.036 vs -.042, the standard error for the regression coefficient

for thtden has increased slightly, meaning the estimate is less precise. If the correlation between thtden and

cpfor2 was greater, the change in precision would also be greater.

We can compare the fit of the last two models (i.e., the model with all 3 variables and the model with only logarea

and thtden to decide which model is best to include.

anova(model_mtri, model_mden)

Res.Df RSS Df Sum of Sq F Pr(>F)

24 0.6293717 NA NA NA NA

25 0.6450798 -1 -0.0157081 0.5990024 0.4465163

Note that this is the identical result we obtained via the t-test of the effect of cpfor2 in the model with all 3 variables

above as they are testing the same thing (this should make sense to you). From this analysis, we would conclude that

the full model with all three variables included does not offer a significant improvement in fit over the model with

only logarea and thtden. This isn’t surprising given that we already know that we cannot reject the null hypothesis

of no effect of cpfor2 in the full model. Overall, we would conclude, on the basis of these analyses, that:

1. Given the three variables thtden , logarea and cpfor2 , the best model is one that includes the first two

variables.

2. There is evidence of a negative relationship between herptile richness and the density of roads on adjacent

lands.

3. There is evidence that the larger the wetland area, the greater the herptile species richness. Note that by “best”,

I don’t mean the best possible model, I mean the best one given the three predictor variables we started with.

It seems pretty clear that there are other factors controlling richness in wetlands, since even with the “best”

model, almost half of the variability in richness is unexplained.

401



Chapter 13. Multiple regression

13.5. Stepwise multiple regression procedures

There are a number of techniques available for selecting the multiple regression model that best suits your data.

When working with only three independent variables it is often sufficient to work through the different combinations

of possible variables yourself, until you are satisfied you have fit the best model. This is, essentially, what we did in

the first section of this lab. However, the process can become tedious when dealing with numerous independent

variables, and you may find an automatic procedure for fitting models to be easier to work with.

Stepwise regression in R relies on the Akaike Information Criterion, as a measure of goodness of fit

𝐴𝐼𝐶 = 2𝑘 + 2𝑙𝑛(𝐿))

where k is the number of regressors, and L is the maximized value of the likelihood function for the model). This is a

statistic that rewards prediction precision while penalizing model complexity. If a new model has an AIC lower than

that of the current model, the new model is a better fit to the data.

Fire Exercise

Still working with the Mregdat data, run a stepwise multiple regression on the same set of variables:

# Stepwise Regression

step_mtri <- step(model_mtri, direction = "both")

Start: AIC=-98.27

logherp ~ logarea + cpfor2 + thtden

Df Sum of Sq RSS AIC

- cpfor2 1 0.01571 0.64508 -99.576

<none> 0.62937 -98.267

- thtden 1 0.13585 0.76522 -94.794

- logarea 1 0.41198 1.04135 -86.167

Step: AIC=-99.58

logherp ~ logarea + thtden

Df Sum of Sq RSS AIC

402



13.5. Stepwise multiple regression procedures

<none> 0.64508 -99.576

+ cpfor2 1 0.01571 0.62937 -98.267

- thtden 1 0.25092 0.89600 -92.376

- logarea 1 0.40204 1.04712 -88.013

step_mtri$anova # display results

Step Df Deviance Resid. Df Resid. Dev AIC

NA NA 24 0.6293717 -98.26666

- cpfor2 1 0.0157081 25 0.6450798 -99.57640

Examining the output, we find:

1. R calculated the AIC for the starting model (here the full model with the 3 independent variables.

2. The AIC for models where terms are deleted. Note here that the only way to reduce the AIC is to drop 2.

3. The AIC for models where terms are added or deleted from the model selected in the first step (i.e. logherp

~ logarea + thtden. Note that none of these models are better.

Instead of starting from the full (saturated) model and removing and possibly re-adding terms (i.e. direction = “both”),

one can start from the null model and only add terms:

# Forward selection approach

model_null <- lm(logherp ~ 1, data = mydata)

step_f <- step(

model_null,

scope = ~ . + logarea + cpfor2 + thtden, direction = "forward"

)

Start: AIC=-82.09

logherp ~ 1

Df Sum of Sq RSS AIC

+ logarea 1 0.49352 0.8960 -92.376

+ thtden 1 0.34241 1.0471 -88.013

403



Chapter 13. Multiple regression

+ cpfor2 1 0.12907 1.2605 -82.820

<none> 1.3895 -82.091

Step: AIC=-92.38

logherp ~ logarea

Df Sum of Sq RSS AIC

+ thtden 1 0.25093 0.64508 -99.576

+ cpfor2 1 0.13078 0.76522 -94.794

<none> 0.89600 -92.376

Step: AIC=-99.58

logherp ~ logarea + thtden

Df Sum of Sq RSS AIC

<none> 0.64508 -99.576

+ cpfor2 1 0.015708 0.62937 -98.267

step_f$anova # display results

Step Df Deviance Resid. Df Resid. Dev AIC

NA NA 27 1.3895281 -82.09073

+ logarea -1 0.4935233 26 0.8960048 -92.37639

+ thtden -1 0.2509250 25 0.6450798 -99.57640

You should first notice that the final result is the same as the default stepwise regression and as what we got building

the model from scratch. In forward selection, R first fits the least complex model (i.e, with only an intercept), and

then adds variables, one by one, according to AIC statistics. Thus, in the above example, the model was first fit

with only an intercept. Next, logarea was added, followed by thtden. cpfor2 was not added because it would

make AIC increase to above that of the model fit with the first two variables. Generally speaking, when doing

multiple regressions, it is good practice to try several different methods (e.g. all regressions, stepwise, and backward

elimination, etc.) and see whether you get the same results. If you don’t, then the “best” model may not be so obvious,

and you will have to think very carefully about the inferences you draw. In this case, regardless of whether we use

automatic, or forward/backward stepwise regression, we arrive at the same model.

404



13.6. Detecting multicollinearity

When doing multiple regression, always bear in mind the following:

1. Different procedures may produce different “best” models, i.e. the “best” model obtained using forward

stepwise regression needn’t necessarily be the same as that obtained using backward stepwise. It is good

practice to try several different methods and see whether you end up with the same result. If you don’t, it is

almost invariably due to multicollinearity among the independent variables.

2. Be wary of stepwise regression. As the authors of SYSTAT, another commonly used statistical package, note:

Stepwise regression is probably the most abused computerized statistical technique ever devised. If

you think you need automated stepwise regression to solve a particular problem, you probably don’t.

Professional statisticians rarely use automated stepwise regression because it does not necessarily

find the “best” fitting model, the “real” model, or alternative “plausible” models. Furthermore, the

order in which variables enter or leave a stepwise program is usually of no theoretical significance.

You are always better off thinking about why a model could generate your data and then testing that

model.

3. Remember that just because there is a significant regression of Y on X doesn’t mean that X causes Y: correlation

does not imply causation!

13.6. Detecting multicollinearity

Multicollinearity is the presence of correlations among independent variables. In extreme cases (perfect collinearity)

it will prevent you from fitting some models.

Exclamation-Triangle Warning

When collinearity is not perfect, it reduces your ability to test for the effect of individual variables, but does not

affect the ability of the model to predict.

The help file for the HH package contains this clear passage about one of the indices of multicollinearity, the

variance inflation factors:

A simple diagnostic of collinearity is the variance inflation factor, VIF one for each regression coefficient

(other than the intercept). Since the condition of collinearity involves the predictors but not the response,

this measure is a function of the X’s but not of Y. The VIF for predictor i is

1/(1 − 𝑅2
𝑖 )

405



Chapter 13. Multiple regression

where Ri
2 is the R2 from a regression of predictor i against the remaining predictors. If Ri

2 is close to

1, this means that predictor i is well explained by a linear function of the remaining predictors, and,

therefore, the presence of predictor i in the model is redundant. Values of VIF exceeding 5 are considered

evidence of collinearity: The information carried by a predictor having such a VIF is contained in a

subset of the remaining predictors. If, however, all of a model’s regression coefficients differ significantly

from 0 (p-value < .05), a somewhat larger VIF may be tolerable.

VIFs indicate by how much the variance of each regression coefficient is increased by the presence of collinearity.

INFO Note

There are several vif() functions (I know of at least three in the packages car, HH and DAAG) and I do not

know if and how they differ.

To quantify multicollinarity, one can simply call the vif() function from the package car:

library(car)

vif(model_mtri)

logarea cpfor2 thtden

1.022127 1.344455 1.365970

Here there is no evidence that multicollinearity is a problem since all vif are close to 1.

13.7. Polynomial regression

In the regression models considered so far, we have assumed that the relationship between the dependent and

independent variables is linear. If not, in some cases it can be made linear by transforming one or both variables. On

the other hand, for many biological relationships no transformation in the world will help, and we are forced to go

with some sort of non-linear regression method.

The simplest type of nonlinear regression method is polynomial regression, in which you fit regression models that

include independent variables raised to some power greater than one, e.g. X2, X3, etc.

Fire Exercise

Plot the relationship between the residuals of the logherp ~ logarea regression and swamp.

406



13.7. Polynomial regression

LIGHTBULB Solution

# problème avec les données de manquantes dans logherp

mysub <- subset(mydata, !is.na(logherp))

# ajouter les résidus dans les donnée

mysub$resloga <- residuals(model_loga)

ggplot(data = mysub, aes(y = resloga, x = swamp)) +

geom_point() +

geom_smooth()

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

−0.50

−0.25

0.00

0.25

0.50

25 50 75 100
swamp

re
sl

og
a

Figure 13.3.: Relation entre swamp et les résidus de la régression entre logherp et logarea

Visual inspection of this graph suggests that there is a strong, but highly nonlinear, relationship between these two

variables.

Fire Exercise

Try regressing the residuals of the logherp ~ logarea regression on swamp. What do you conclude?

407



Chapter 13. Multiple regression

LIGHTBULB Solution

model_resloga <- lm(resloga ~ swamp, mysub)

summary(model_resloga)

Call:

lm(formula = resloga ~ swamp, data = mysub)

Residuals:

Min 1Q Median 3Q Max

-0.35088 -0.13819 0.00313 0.10849 0.45802

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.084571 0.109265 0.774 0.446

swamp -0.001145 0.001403 -0.816 0.422

Residual standard error: 0.1833 on 26 degrees of freedom

Multiple R-squared: 0.02498, Adjusted R-squared: -0.01252

F-statistic: 0.666 on 1 and 26 DF, p-value: 0.4219

In other words, the fit is terrible, even though you can see from the graph that there is in fact quite a strong relationship

between the two - it’s just that it is a non-linear relationship. (If you look at model assumptions for this model, you

will see strong evidence of nonlinearity, as expected) The pattern might be well described by a quadratic relation.

Fire Exercise

Rerun the above regression but add a second term in the Formula field to represent swamp2 . If you simply add

swamp2 in the model R won’t fit a quadratic effect, you need to use the functionI() which indicates that the

formula within should be evaluated before fitting the model.

The expression should appear as:

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑠𝑤𝑎𝑚𝑝 + 𝐼(𝑠𝑤𝑎𝑚𝑝2)
.

408



13.7. Polynomial regression

What do you conclude? What does examination of the residuals from this multiple regression tell you?

LIGHTBULB Solution

model_resloga2 <- lm(resloga ~ swamp + I(swamp^2), mysub)

summary(model_resloga2)

Call:

lm(formula = resloga ~ swamp + I(swamp^2), data = mysub)

Residuals:

Min 1Q Median 3Q Max

-0.181185 -0.085350 0.007377 0.067327 0.242455

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.804e-01 1.569e-01 -4.975 3.97e-05 ***

swamp 3.398e-02 5.767e-03 5.892 3.79e-06 ***

I(swamp^2) -2.852e-04 4.624e-05 -6.166 1.90e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1177 on 25 degrees of freedom

Multiple R-squared: 0.6132, Adjusted R-squared: 0.5823

F-statistic: 19.82 on 2 and 25 DF, p-value: 6.972e-06

par(mfrow = c(2, 2))

plot(model_resloga2)

409



Chapter 13. Multiple regression

−0.3 −0.1 0.1

−
0.

2

Fitted values

R
es

id
ua

ls Residuals vs Fitted
2030

12

−2 −1 0 1 2

−
1

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals
2030

12

−0.3 −0.1 0.1

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
203012

0.0 0.1 0.2 0.3 0.4

−
2

LeverageS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance
1

0.5

Residuals vs Leverage
1120

8

It is clear that once the effects of area are controlled for, a considerable amount of the remaining variability in

herptile richness is explained by swamp , in a nonlinear fashion. If you examine model assumptions, you will see that

compared to the linear model, the fit is much better.

Based on the results from the above analyses, how would you modify the regression model arrived at above? What,

in your view, is the “best” overall model? Why? How would you rank the various factors in terms of their effects on

herptile species richness?

In light of these results, we might want to try and fit a model which includes logarea, thtden, cpfor2, swamp and

swamp^2^ :

LIGHTBULB Solution

model_poly1 <- lm(

logherp ~ logarea + cpfor2 + thtden + swamp + I(swamp^2),

data = mydata

)

summary(model_poly1)

Call:

lm(formula = logherp ~ logarea + cpfor2 + thtden + swamp + I(swamp^2),

410



13.7. Polynomial regression

data = mydata)

Residuals:

Min 1Q Median 3Q Max

-0.201797 -0.056170 -0.002072 0.051814 0.205626

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.203e-01 1.813e-01 -1.766 0.0912 .

logarea 2.202e-01 3.893e-02 5.656 1.09e-05 ***

cpfor2 -7.864e-04 9.955e-04 -0.790 0.4380

thtden -2.929e-02 1.048e-02 -2.795 0.0106 *

swamp 3.113e-02 5.898e-03 5.277 2.70e-05 ***

I(swamp^2) -2.618e-04 4.727e-05 -5.538 1.45e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1072 on 22 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.8181, Adjusted R-squared: 0.7767

F-statistic: 19.78 on 5 and 22 DF, p-value: 1.774e-07

Note that on the basis of this analysis, we could potentially drop cpfor2 and refit using the remaining variables:

LIGHTBULB Solution

model_poly2 <- lm(

logherp ~ logarea + thtden + swamp + I(swamp^2),

data = mydata

)

summary(model_poly2)

Call:

lm(formula = logherp ~ logarea + thtden + swamp + I(swamp^2),

411



Chapter 13. Multiple regression

data = mydata)

Residuals:

Min 1Q Median 3Q Max

-0.19621 -0.05444 -0.01202 0.07116 0.21295

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.461e-01 1.769e-01 -1.957 0.0626 .

logarea 2.232e-01 3.842e-02 5.810 6.40e-06 ***

thtden -2.570e-02 9.364e-03 -2.744 0.0116 *

swamp 2.956e-02 5.510e-03 5.365 1.89e-05 ***

I(swamp^2) -2.491e-04 4.409e-05 -5.649 9.46e-06 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1063 on 23 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.8129, Adjusted R-squared: 0.7804

F-statistic: 24.98 on 4 and 23 DF, p-value: 4.405e-08

How about multicollinearity in this model?

vif(model_poly2)

logarea thtden swamp I(swamp^2)

1.053193 1.123491 45.845845 45.656453

VIF for the two swamp terms are much higher than the standard threshold of 5. However, this is expected for

polynomial terms, and not really a concern given that both terms are highly significant in the model. The high VIF

means that these two coefficients are not estimated precisely, but using both in the model still allows to make a good

prediction (i.e. account for the response to swamp).

412



13.8. Checking assumptions of a multiple regression model

13.8. Checking assumptions of a multiple regression model

All the model selection techniques or the manual model crafting assumes that the standard assumptions (independence,

normality, homoscedasticity, linearity) are met. Given that a large number of models can be fitted, it may seem that

testing the assumptions at each step would be an herculean task. However, it is generally sufficient to examine the

residuals of the full (saturated) model and of the final model. Terms not contributing significantly to the fit do not

affect residuals much, and therefore, the residuals to the full model, or the residuals to the final model, are generally

sufficient.

Let’s have a look at the diagnostic plots for the final model. Here we use the check_model() function from the

performance .

LIGHTBULB Solution

library(performance)

check_model(model_poly2)

0.00.51.01.52.0
0.0 0.5 1.0

logherp

D
en

si
ty

Observed data Model−predicted data

Model−predicted lines should resemble observed data line
Posterior Predictive Check

−0.3−0.2−0.10.00.10.2
0.50 0.75 1.00

Fitted valuesR
es

id
ua

ls

Reference line should be flat and horizontal
Linearity

0.00.51.01.5
0.50 0.75 1.00

Fitted values|S
td

. r
es

id
ua

ls
|

Reference line should be flat and horizontal
Homogeneity of Variance

10 231828 17

0.9

0.9
−505

0.0 0.2 0.4 0.6

Leverage (hii)S
td

. R
es

id
ua

ls

Points should be inside the contour lines
Influential Observations

135103050
I(swamp^2)logareaswamp thtden

V
ar

ia
nc

e 
In

fla
tio

n
Fa

ct
or

 (
V

IF
, l

og
−

sc
al

ed
)

Low (< 5) High (>= 10)

High collinearity (VIF) may inflate parameter uncertainty
Collinearity

−2−1012
−2 −1 0 1 2

Standard Normal Distribution Quantiles

S
am

pl
e 

Q
ua

nt
ile

 D
ev

ia
tio

ns

Dots should fall along the line
Normality of Residuals

Figure 13.4.: Conditions d’application du modèle model_poly2

Alternatively it can be done with the classic method

413



Chapter 13. Multiple regression

LIGHTBULB Code

par(mfrow = c(2, 2))

plot(model_poly2)

0.4 0.6 0.8 1.0

−
0.

2

Fitted values

R
es

id
ua

ls Residuals vs Fitted
30

12

20

−2 −1 0 1 2

−
2

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals

12

3020

0.4 0.6 0.8 1.0

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
12 30 20

0.0 0.2 0.4 0.6

−
2

LeverageS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance 1
0.5

Residuals vs Leverage

12

2520

Figure 13.5.: Conditions d’application du modèle model_poly2

Everything looks about right here. For the skeptic, let’s run the formal tests.

shapiro.test(residuals(model_poly2))

Shapiro-Wilk normality test

data: residuals(model_poly2)

W = 0.9837, p-value = 0.9278

The residuals do not deviate from normality. Good.

library(lmtest)

bptest(model_poly2)

414



13.9. Visualizing effect size

studentized Breusch-Pagan test

data: model_poly2

BP = 3.8415, df = 4, p-value = 0.4279

No deviation from homoscedasticity either. Good.

dwtest(model_poly2)

Durbin-Watson test

data: model_poly2

DW = 1.725, p-value = 0.2095

alternative hypothesis: true autocorrelation is greater than 0

No serial correlation in the residuals, so no evidence of non-independence.

resettest(model_poly2, type = "regressor", data = mydata)

RESET test

data: model_poly2

RESET = 0.9823, df1 = 8, df2 = 15, p-value = 0.4859

And no significant deviation from linearity. So it seems that all is fine.

13.9. Visualizing effect size

How about effect size? How is that measured or viewed? The regression coefficients can be used to measure effect

size, although it may be better to standardize them so that they become independent of measurement units. But a

graph is often useful as well. In this context, some of the most useful graphs are called partial residual plots (or

415



Chapter 13. Multiple regression

component + residual plots). These plots show how the dependent variable, corrected for other variables in the

model, varies with each individual variable. Let’s have a look:

# Evaluate visually linearity and effect size

# component + residual plot

crPlots(model_poly2)

1.5 2.0 2.5 3.0

−
0.

4
0.

2

logareaC
om

po
ne

nt
+

R
es

id
ua

l(l
og

he
rp

)

0 2 4 6
−

0.
2

0.
1

thtdenC
om

po
ne

nt
+

R
es

id
ua

l(l
og

he
rp

)

20 40 60 80 100

−
1.

5
0.

5

swampC
om

po
ne

nt
+

R
es

id
ua

l(l
og

he
rp

)

0 2000 6000 10000

−
1.

0
1.

0

I(swamp^2)C
om

po
ne

nt
+

R
es

id
ua

l(l
og

he
rp

)

Component + Residual Plots

Figure 13.6.: Graphiques de résidus partiels du modèle model_poly2

Note that the vertical scale varies among plots. For thtden, the dependent variable (log10(herptile richness)) varies

by about 0.4 units over the range of thtden in the sample. For logarea, the variation is about 0.6 log units. For

swamp, it is a bit tricky since there are two terms and they have opposite effect (leading to a peaked relationship), so

the plots are less informative. However, there is no deviation from linearity to be seen.

To illustrate what these graphs would look like if there was deviation from linearity, let’s drop swamp2 term and

produce the graphs and run the RESET test

416



13.9. Visualizing effect size

LIGHTBULB Solution

model_nopoly <- lm(

logherp ~ logarea + thtden + swamp,

data = mydata

)

crPlots(model_nopoly)

1.5 2.0 2.5 3.0

−
0.

4
0.

2

logareaC
om

po
ne

nt
+

R
es

id
ua

l(l
og

he
rp

)

0 2 4 6

−
0.

2
0.

4
thtdenC

om
po

ne
nt

+
R

es
id

ua
l(l

og
he

rp
)

20 40 60 80 100

−
0.

3
0.

2

swampC
om

po
ne

nt
+

R
es

id
ua

l(l
og

he
rp

)

Component + Residual Plots

Figure 13.7.: Graphiques de résidus partiels du modèle model_nopoly

The lack of linearity along the gradient of swamp becomes obvious. The RESET test also detects a violation from

linearity:

resettest(model_nopoly, type = "regressor")

RESET test

data: model_nopoly

RESET = 6.7588, df1 = 6, df2 = 18, p-value = 0.0007066

417



Chapter 13. Multiple regression

13.10. Testing for interactions

When there are multiple independent variables one should always be ready to assess interactions. In most multiple

regression contexts this is somewhat difficult because adding interaction terms increases overall multicollinearity

and because in many cases there are not enough observations to test all interactions, or the observations are not well

balanced to make powerful tests for interactions. Going back to our final model, see what happens if one tries to fit

the fully saturated model with all interactions:

fullmodel_withinteractions <- lm(

logherp ~ logarea * cpfor2 * thtden * swamp * I(swamp^2),

data = mydata

)

summary(fullmodel_withinteractions)

Call:

lm(formula = logherp ~ logarea * cpfor2 * thtden * swamp * I(swamp^2),

data = mydata)

Residuals:

ALL 28 residuals are 0: no residual degrees of freedom!

Coefficients: (4 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.948e+03 NaN NaN NaN

logarea 3.293e+03 NaN NaN NaN

cpfor2 7.080e+01 NaN NaN NaN

thtden 9.223e+02 NaN NaN NaN

swamp 1.176e+02 NaN NaN NaN

I(swamp^2) -3.517e-01 NaN NaN NaN

logarea:cpfor2 -3.771e+01 NaN NaN NaN

logarea:thtden -4.781e+02 NaN NaN NaN

cpfor2:thtden -1.115e+01 NaN NaN NaN

logarea:swamp -7.876e+01 NaN NaN NaN

418



13.10. Testing for interactions

cpfor2:swamp -1.401e+00 NaN NaN NaN

thtden:swamp -1.920e+01 NaN NaN NaN

logarea:I(swamp^2) 5.105e-01 NaN NaN NaN

cpfor2:I(swamp^2) 3.825e-03 NaN NaN NaN

thtden:I(swamp^2) 7.826e-02 NaN NaN NaN

swamp:I(swamp^2) -2.455e-03 NaN NaN NaN

logarea:cpfor2:thtden 5.359e+00 NaN NaN NaN

logarea:cpfor2:swamp 8.743e-01 NaN NaN NaN

logarea:thtden:swamp 1.080e+01 NaN NaN NaN

cpfor2:thtden:swamp 2.620e-01 NaN NaN NaN

logarea:cpfor2:I(swamp^2) -5.065e-03 NaN NaN NaN

logarea:thtden:I(swamp^2) -6.125e-02 NaN NaN NaN

cpfor2:thtden:I(swamp^2) -1.551e-03 NaN NaN NaN

logarea:swamp:I(swamp^2) -4.640e-04 NaN NaN NaN

cpfor2:swamp:I(swamp^2) 3.352e-05 NaN NaN NaN

thtden:swamp:I(swamp^2) 2.439e-04 NaN NaN NaN

logarea:cpfor2:thtden:swamp -1.235e-01 NaN NaN NaN

logarea:cpfor2:thtden:I(swamp^2) 7.166e-04 NaN NaN NaN

logarea:cpfor2:swamp:I(swamp^2) NA NA NA NA

logarea:thtden:swamp:I(swamp^2) NA NA NA NA

cpfor2:thtden:swamp:I(swamp^2) NA NA NA NA

logarea:cpfor2:thtden:swamp:I(swamp^2) NA NA NA NA

Residual standard error: NaN on 0 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 1, Adjusted R-squared: NaN

F-statistic: NaN on 27 and 0 DF, p-value: NA

Indeed, it is not possible to include all 32 terms with only 28 observations. There are not enough data points, R

square is one, and the model perfectly overfits the data.

If you try to use an automated routine to “pick” the best model out of this soup, R complains:

419



Chapter 13. Multiple regression

step(fullmodel_withinteractions)

Error in step(fullmodel_withinteractions): AIC is -infinity for this model, so 'step' cannot proceed

Does this mean you can forget about potential interactions and simply accept the final model without a thought?

No. You simply do not have enough data to test for all interactions. But there is a compromise worth attempting,

comparing the final model to a model with a subset of the interactions, say all second order interactions, to check

whether the inclusion of these interactions improves substantially the fit:

full_model_2ndinteractions <- lm(

logherp ~ logarea + cpfor2 + thtden + swamp + I(swamp^2)

+ logarea:cpfor2

+ logarea:thtden

+ logarea:swamp

+ cpfor2:thtden

+ cpfor2:swamp

+ thtden:swamp,

data = mydata

)

summary(full_model_2ndinteractions)

Call:

lm(formula = logherp ~ logarea + cpfor2 + thtden + swamp + I(swamp^2) +

logarea:cpfor2 + logarea:thtden + logarea:swamp + cpfor2:thtden +

cpfor2:swamp + thtden:swamp, data = mydata)

Residuals:

Min 1Q Median 3Q Max

-0.216880 -0.036534 0.003506 0.042990 0.175490

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.339e-01 6.325e-01 0.686 0.502581

420



13.10. Testing for interactions

logarea -1.254e-01 2.684e-01 -0.467 0.646654

cpfor2 -9.344e-03 7.205e-03 -1.297 0.213032

thtden -1.833e-01 9.035e-02 -2.028 0.059504 .

swamp 3.569e-02 7.861e-03 4.540 0.000334 ***

I(swamp^2) -3.090e-04 7.109e-05 -4.347 0.000500 ***

logarea:cpfor2 2.582e-03 2.577e-03 1.002 0.331132

logarea:thtden 7.017e-02 3.359e-02 2.089 0.053036 .

logarea:swamp -5.290e-04 2.249e-03 -0.235 0.816981

cpfor2:thtden -2.095e-04 6.120e-04 -0.342 0.736544

cpfor2:swamp 4.651e-05 5.431e-05 0.856 0.404390

thtden:swamp 2.248e-04 4.764e-04 0.472 0.643336

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.108 on 16 degrees of freedom

(2 observations deleted due to missingness)

Multiple R-squared: 0.8658, Adjusted R-squared: 0.7735

F-statistic: 9.382 on 11 and 16 DF, p-value: 4.829e-05

This model fits the data slightly better than the “final” model (it explains 86.6% of the variance in logherp, compared

to 81.2% for the “final” model without interactions), but has twice as many parameters.

If you look at the individual coefficients, some weird things happen: for example, the sign for logarea has changed.

This is one of the symptoms of multicollinearity. Let’s look at the variance inflation factors:

vif(full_model_2ndinteractions)

there are higher-order terms (interactions) in this model

consider setting type = 'predictor'; see ?vif

logarea cpfor2 thtden swamp I(swamp^2)

49.86060 78.49622 101.42437 90.47389 115.08457

logarea:cpfor2 logarea:thtden logarea:swamp cpfor2:thtden cpfor2:swamp

66.97792 71.69894 67.27034 14.66814 29.41422

thtden:swamp

421



Chapter 13. Multiple regression

20.04410

Ouch. All VIF are above 5, not only the ones involving the swamp terms. This model is not very satisfying it seems.

Indeed the AIC for the two models indicate that the model with interactions has less information than the full model

(remember, models with the lowest AIC value are to be preferred):

AIC(model_poly1)

[1] -38.3433

AIC(full_model_2ndinteractions)

[1] -34.86123

The anova() command can be used to test whether the addition of all interaction terms improves the fit significantly:

anova(model_poly1, full_model_2ndinteractions)

Res.Df RSS Df Sum of Sq F Pr(>F)

22 0.2528203 NA NA NA NA

16 0.1865067 6 0.0663136 0.9481497 0.4890062

This test indicates that the addition of interaction terms did not reduce significantly the residual variance around the

full model. How about a comparison with the final model without cpfor2?

anova(model_poly2, full_model_2ndinteractions)

Res.Df RSS Df Sum of Sq F Pr(>F)

23 0.2599923 NA NA NA NA

16 0.1865067 7 0.0734856 0.9005955 0.5294411

And this comparison suggests that our final model does not make worse predictions than the full model with

interactions.

422



13.11. Dredging and the information theoretical approach

13.11. Dredging and the information theoretical approach

One of the main critiques of stepwise methods is that the p-values are not strictly correct because of the large number

of tests that are actually done. This is the multiple testing problem. In building linear models (multiple regression for

example) from a large number of independent variables, and possibly their interactions, there are so many possible

combinations that if one were to use Bonferroni type corrections, it would make tests very conservative.

An alternative, very elegantly advocated by Burnham and Anderson (2002, Model selection and multimodel inference:

a practical information-theoretic approach. 2nd ed), is to use AIC (or better the AICc that is more appropriate for

samples where the number of observations is less that about 40 times the number of variables) to rank potential

models, and identify the set of models that are the best ones. One can then average the parameters across models,

weighting using the probability that it is the best model to obtain coefficients that are more robust and less likely to

be unduly affected by multicollinearity.

Exclamation-Triangle Warning

To compare models using AIC, models need to be fitted using the exact same data for each model. You thus

need to be careful that there are no missing data when using an AIC based approach to model selection

The approach of comparing model fit using AIC was first developed to compare a set of model carefully build and

chosen by the person doing the analysis based on a-priori knowledge and biological hypotheses. Some, however,

developped an approach that I consider brainless and brutal to fit all potential models and then compare them using

AIC. This approach has been implemented in the package MuMIn.

INFO Note

I do not support the use of stepwise AIC or data dredging which are going against the philosophy of AIC and

parsimony. Develop a model based on biological hypothesis and report all the results significant or not without

dredging the data.

# redo the model double chekcing there are no "NA"

# specifying na.action

full_model_2ndinteractions <- update(

full_model_2ndinteractions,

. ~ .,

data = mysub,

423



Chapter 13. Multiple regression

na.action = "na.fail"

)

library(MuMIn)

dd <- dredge(full_model_2ndinteractions)

Fixed term is "(Intercept)"

Object dd will contain all possible models using the terms of our full model with 2nd order interactions. Then, we

can have a look at the subset of models that have an AICc within 4 units from the lowest AICc model. (Burnham and

Anderson suggest that models that deviate by more than 2 AICc units have very little empirical support):

# get models within 4 units of AICc from the best model

top_models_1 <- get.models(dd, subset = delta < 4)

avgmodel1 <- model.avg(top_models_1) # compute average parameters

summary(avgmodel1) # display averaged model

Call:

model.avg(object = top_models_1)

Component model call:

lm(formula = logherp ~ <8 unique rhs>, data = mysub, na.action =

na.fail)

Component models:

df logLik AICc delta weight

23457 7 27.78 -35.95 0.00 0.34

2345 6 25.78 -35.56 0.39 0.28

123457 8 28.30 -33.02 2.93 0.08

234578 8 28.26 -32.95 3.00 0.08

12345 7 26.17 -32.74 3.21 0.07

23458 7 26.06 -32.51 3.44 0.06

234567 8 27.88 -32.17 3.78 0.05

424



13.11. Dredging and the information theoretical approach

23456 7 25.79 -31.99 3.97 0.05

Term codes:

cpfor2 I(swamp^2) logarea swamp thtden

1 2 3 4 5

logarea:swamp logarea:thtden swamp:thtden

6 7 8

Model-averaged coefficients:

(full average)

Estimate Std. Error Adjusted SE z value Pr(>|z|)

(Intercept) -2.075e-01 2.484e-01 2.593e-01 0.800 0.424

logarea 1.314e-01 1.185e-01 1.222e-01 1.076 0.282

swamp 3.193e-02 6.125e-03 6.438e-03 4.960 7e-07 ***

I(swamp^2) -2.676e-04 4.904e-05 5.154e-05 5.193 2e-07 ***

thtden -6.843e-02 5.324e-02 5.459e-02 1.254 0.210

logarea:thtden 2.139e-02 2.506e-02 2.565e-02 0.834 0.404

cpfor2 -1.202e-04 4.710e-04 4.886e-04 0.246 0.806

swamp:thtden -3.277e-05 1.419e-04 1.475e-04 0.222 0.824

logarea:swamp 4.378e-05 5.378e-04 5.676e-04 0.077 0.939

(conditional average)

Estimate Std. Error Adjusted SE z value Pr(>|z|)

(Intercept) -2.075e-01 2.484e-01 2.593e-01 0.800 0.4236

logarea 1.314e-01 1.185e-01 1.222e-01 1.076 0.2820

swamp 3.193e-02 6.125e-03 6.438e-03 4.960 7e-07 ***

I(swamp^2) -2.676e-04 4.904e-05 5.154e-05 5.193 2e-07 ***

thtden -6.843e-02 5.324e-02 5.459e-02 1.254 0.2100

logarea:thtden 3.924e-02 2.125e-02 2.251e-02 1.743 0.0813 .

cpfor2 -8.187e-04 9.692e-04 1.027e-03 0.797 0.4253

swamp:thtden -2.402e-04 3.127e-04 3.313e-04 0.725 0.4684

logarea:swamp 4.462e-04 1.664e-03 1.762e-03 0.253 0.8001

---

425



Chapter 13. Multiple regression

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

confint(avgmodel1) # display CI for averaged coefficients

2.5 % 97.5 %

(Intercept) -0.7157333646 0.3007147516

logarea -0.1080048582 0.3708612563

swamp 0.0193158426 0.0445532538

I(swamp^2) -0.0003686653 -0.0001666418

thtden -0.1754184849 0.0385545120

logarea:thtden -0.0048800385 0.0833595106

cpfor2 -0.0028313465 0.0011940283

swamp:thtden -0.0008894138 0.0004090457

logarea:swamp -0.0030067733 0.0038991294

1. components models: You first get the list of the models with an AICc within the desired 4 units of the best

model. The variables that are included in the model are coded with the key just below.

2. For each model, in addition to the AICc, the Akaike weights are calculated. They represent the relative

likelihood of a model, and indicate the relative importance of a model compared to the other models tested.

3. Mode-averaged coefficients:� For the subset of models, weighted averages (using Akaike weights) for model

parameters are calculated, with 95% CI. Note that, by default, terms missing from a model are assumed to

have a coefficient of 0.

13.12. Bootstrapping multiple regression

When data do not meet the assumptions of normality and homoscedasticity and it is not possible to transform the data

to meet the assumptions, bootstraping can be used to compute confidence intervals for coefficients. If the distribution

of the bootstrapped coefficients is symmetrical and approximately Gaussian, then empirical percentiles can be used

to estimate the confidence limits.

The following code, using the simpleboot has been designed to be easily modifiable and will compute CI using

empirical percentiles. Following this is an easier approach using the library boot that will calculate several different

bootstrap confidence limits.

426



13.12. Bootstrapping multiple regression

############################################################

#######

# Bootstrap analysis the simple way with library simpleboot

# Define model to be bootstrapped and the data source used

mymodel <- lm(logherp ~ logarea + thtden + swamp + I(swamp^2), data = mydata)

# Set the number of bootstrap iterations

nboot <- 1000

library(simpleboot)

# R is the number of bootstrap iterations

# Setting rows to FALSE indicates resampling of residuals

mysimpleboot <- lm.boot(mymodel, R = nboot, rows = FALSE)

# Extract bootstrap coefficients

myresults <- sapply(mysimpleboot$boot.list, function(x) x$coef)

# Transpose matrix so that lines are bootstrap iterations

# and columns are coefficients

tmyresults <- t(myresults)

You can then plot the results using the follwoing code. When run, it will pause to let you have a look at the distribution

for each coefficient in the model by producing plots like:

# Plot histograms of bootstrapped coefficients

ncoefs <- length(data.frame(tmyresults))

par(mfrow = c(1, 2), mai = c(0.5, 0.5, 0.5, 0.5), ask = TRUE)

for (i in 1:ncoefs) {

lab <- colnames(tmyresults)[i]

x <- tmyresults[, i]

plot(density(x), main = lab, xlab = "")

abline(v = mymodel$coef[i], col = "red")

abline(v = quantile(x, c(0.025, 0.975)))

hist(x, main = lab, xlab = "")

abline(v = quantile(x, c(0.025, 0.975)))

abline(v = mymodel$coef[i], col = "red")

}

427



Chapter 13. Multiple regression

0.10 0.20 0.30

0
2

4
6

8
12

logarea

D
en

si
ty

logarea

F
re

qu
en

cy

0.10 0.20 0.30

0
50

15
0

Figure 13.8.: Distribution of bootstrapped estimates for logarea

The top plot is the probability density function and the bottom one is the histogram of the bootstrap estimates for

the coefficient. On these plots, the red line indicate the value of the parameter in the ordinary analysis, and the two

vertical black lines mark the limits of the 95% confidence interval. Here the CI does not include 0 and one can

conclude that the effect of logarea on logherp is significantly positive.

Precise values for the limits can be obtained by:

# Display empirical bootstrap quantiles (not corrected for bias)

p <- c(0.005, 0.01, 0.025, 0.05, 0.95, 0.975, 0.99, 0.995)

apply(tmyresults, 2, quantile, p)

(Intercept) logarea thtden swamp I(swamp^2)

0.5% -0.735452920 0.1258150 -0.045932448 0.01619705 -0.0003497515

1% -0.708485440 0.1409869 -0.044642449 0.01797894 -0.0003372905

2.5% -0.677381966 0.1573293 -0.041669156 0.02024060 -0.0003271927

5% -0.619973091 0.1663988 -0.038357265 0.02171437 -0.0003142408

95% -0.090752129 0.2830946 -0.012386321 0.03771589 -0.0001877812

97.5% -0.042671614 0.2964062 -0.009732258 0.03918373 -0.0001742667

99% 0.009413056 0.3079643 -0.006918576 0.04035550 -0.0001559284

99.5% 0.066649913 0.3123665 -0.005976149 0.04163342 -0.0001392665

428



13.12. Bootstrapping multiple regression

These confidence limits are not reliable when the distribution of the bootstrap estimates deviate from Gaussian. If

they do„ then it is preferable to compute so-called bias-corrected accelerated (BCa) confidence limits. The following

code does just that:

################################################

# Bootstrap analysis in multiple regression with BCa confidence intervals

# Preferable when parameter distribution is far from normal

# Bootstrap 95% BCa CI for regression coefficients

library(boot)

# function to obtain regression coefficients for each iteration

bs <- function(formula, data, indices) {

d <- data[indices, ] # allows boot to select sample

fit <- lm(formula, data = d)

return(coef(fit))

}

# bootstrapping with 1000 replications

results <- boot(

data = mydata, statistic = bs, R = 1000,

formula = logherp ~ logarea + thtden + swamp + I(swamp^2)

)

# view results

To get teh results, the following code will produce the standard graph for each coefficient and the resulting BCa

interval.

plot(results, index = 1) # intercept

plot(results, index = 2) # logarea

plot(results, index = 3) # thtden

plot(results, index = 4) # swamp

plot(results, index = 5) # swamp2

# get 95% confidence intervals

boot.ci(results, type = "bca", index = 1)

429



Chapter 13. Multiple regression

boot.ci(results, type = "bca", index = 2)

boot.ci(results, type = "bca", index = 3)

boot.ci(results, type = "bca", index = 4)

boot.ci(results, type = "bca", index = 5)

For logarea, we get:

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1000 bootstrap replicates

CALL :

boot.ci(boot.out = results, type = "bca", index = 2)

Intervals :

Level BCa

95% ( 0.1222, 0.3256 )

Calculations and Intervals on Original Scale

Histogram of t

t*

D
en

si
ty

0.00 0.15 0.30

0
2

4
6

8

−3 −1 1 3

0.
05

0.
15

0.
25

0.
35

Quantiles of Standard Normal

t*

Note that the BCa interval is from 0.12 to 0.32, whereas the simpler percentile interval is 0.16 to 0.29. BCa interval

here is longer on the low side, and shorter on the high side, which it should be given the distribution of bootstrap

estimates.

430



13.13. Permutation test

13.13. Permutation test

Permutation tests are more rarely performed in multiple regression contexts than bootstrap. But here is code to do

it.

############################################################

##########

# Permutation in multiple regression

#

# using lmperm library

library(lmPerm)

# Fit desired model on the desired dataframe

my_model <- lm(logherp ~ logarea + thtden + swamp + I(swamp^2),

data = mydata

)

my_model_prob <- lmp(

logherp ~ logarea + thtden + swamp + I(swamp^2),

data = mydata, perm = "Prob"

)

summary(my_model)

summary(my_model_prob)

431



Chapter 14
ANCOVA and general linear model

After competing this laboratory exercise, you should be able to:

• Use R to do an analysis of covariance (ANCOVA) and interpret statistical models that have both continuous

and categorical independent variables LMs

• Use R to test the assumptions underlying LMs

• Use R to compare model fits

• Use R to do bootstrap and permutation tests on LM type models including both continuous and categorical

independent variables.

14.1. R packages and data

This laboratory requires the following:

• R packages:

– ggplot2

– car

– lmtest

• data files

– anc1dat.csv

– anc3dat.csv

Loading required package: carData

432



14.2. Linear models

Loading required package: zoo

Attaching package: 'zoo'

The following objects are masked from 'package:base':

as.Date, as.Date.numeric

14.2. Linear models

GLM sometimes stands for General Linear Model, however, it is much more frequently used for Generalized linear

models. Thus I always rather talk about Linear models or LMs instead of General linear models to avoid confusion

in the acronym. LMs are statistical models that can be written as 𝑌 = 𝑋𝐵 + 𝐸, where Y is a vector (or matrix)

containing the dependent variable, X is a matrix of independent variables, B is a matrix of estimated parameters, and E

is the vector (or matrix) of independent, normally distributed and homoscedastic residuals. All tests we have seen to

date (t-test, simple linear regression, One-Way ANOVA, Multiway ANOVA, and multiple regression) are LMs. Note

that all models we have encountered until now contain only one type of variable (either continuous or categorical) as

independent variables. In this laboratory exercise, you will fit models that have both type of independent variables.

These models are also LMs.

14.3. ANCOVA

ANCOVA stands for Analysis of Covariance. It is a type of LM where there is one (or more) continuous independent

variable (sometimes called a covariate) and one (or more) categorical independent variable. In the traditional

treatment of ANCOVA in biostatistical textbooks, the ANCOVA model does not contain interaction terms between

the continuous and categorical independent variables. Hence, the traditional ANCOVA analysis assumes that there

is no interaction, and is preceeded by a test of significance of interactions, equivalent to testing that the slopes

(coefficients for the continuous independent variables) do not differ among level of the categorical independent

variables (a test for homogeneity of slopes). Some people, me included, use the term ANCOVA a bit more loosely for

any LM that involves both continuous and categorical variables. Be aware that, depending on the author, ANCOVA

may refer to a model with or without interaction terms.

433



Chapter 14. ANCOVA and general linear model

14.4. Homogeneity of slopes

In many biological problems, a question arises as to whether the slopes of two or more regression lines are significantly

different; for example, whether two different insecticides differ in their efficacy, whether males and females differ

in their growth curves, etc. These problems call for direct comparisons of slopes. GLMs (ANCOVAs) can test for

equality of slopes (homogeneity of slopes).

Remember that there are two parameters that describe a regression line, the intercept and the slope. The ANCOVA

model (sensu stricto) tests for homogeneity of intercepts, but the starting point for the analysis is a test for homogeneity

of slopes. This test can be performed by fitting a model with main effects for both the categorical and continuous

independent variables, plus the interaction term(s), and testing for significance of the addition of the interaction

terms.

14.4.1. Case 1 - Size as a function of age (equal slopes example)

Fire Exercise

Using the file anc1dat.csv , test the hypothesis that female and male sturgeon at The Pas over the years

1978-1980 have the same observed growth rate, defined as the slope of the regression of log10 of fork length,

lfkl , on the log10 age, lage .

First, let’s have a look at the data. It would help to draw the regression line and a lowess trace to better assess linearity.

Being fancy, one could also use more of R magic to spruce up the axis legends (note the use of expression() to

get subscripts):

anc1dat <- read.csv("data/anc1dat.csv")

anc1dat$sex <- as.factor(anc1dat$sex)

myplot <- ggplot(data = anc1dat, aes(x = lage, y = log10(fklngth))) +

facet_grid(. ~ sex) +

geom_point()

myplot <- myplot +

geom_smooth(method = lm, se = FALSE) +

geom_smooth(se = FALSE, color = "red") +

labs(

y = expression(log[10] ~ (Fork ~ length)),

434



14.4. Homogeneity of slopes

x = expression(log[10] ~ (Age))

)

myplot

FEMALE      MALE        

1.2 1.4 1.6 1.2 1.4 1.6

1.6

1.7

1.8

log10 (Age)

lo
g 1

0 
(F

or
k 

le
ng

th
)

Figure 14.1.: Sturgeon length as a function of age

The log-log transformation makes the relationship linear and, at first glance, there is no issues with assumptions of

LMs (although this should be confirmed by appropriate examination of the residuals). Let’s fit the full model with

both main effects and the interaction:

model.full1 <- lm(lfkl ~ sex + lage + sex:lage, data = anc1dat)

Anova(model.full1, type = 3)

Sum Sq Df F value Pr(>F)

(Intercept) 0.6444361 1 794.8182143 0.0000000

sex 0.0004089 1 0.5043251 0.4794836

lage 0.0725916 1 89.5311705 0.0000000

sex:lage 0.0002730 1 0.3366921 0.5632277

Residuals 0.0713501 88 NA NA

435



Chapter 14. ANCOVA and general linear model

In the previous output, on line 4, 0.5632277 is the probability of observing an lage:sex interaction this strong or

stronger under the null hypothesis that slope of the relationship between fork length and age does not vary between

the sexes, or equivalently that the difference in fork length between males and females (if it exists) does not vary with

age (and providing the assumptions of the analysis have been met).

INFO Note

Note that I used the Anova() function with an uppercase “a” (from the car library) instead of the “built in”

anova() (with a lowercase “a”) command to get the results using Type III sums of squares. The type III (partial)

sums of squares are calculated as if each variable was the last entered in the model and correspond to the

difference in explained SS between the full model and a reduced model where only that variable is excluded.

The standard anova() function returns Type I (sequential) SS, calculated as each variable is added sequentially

to a null model with only an intercept. In rare cases, the type I and type III SS are equal (when the design

is perfectly balanced and there is no multicolinearity). In the vast majority of cases, they will differ, and I

recommend that you always use the Type III SS in your analyses.

On the basis of this analysis, we would accept the null hypotheses that:

1. the slope of the regression of log(fork length) on log(age) is the same for males and females (the interaction

term is not significant)

2. that the intercepts are also the same for the two sexes (the sex term is also not significant).

But before accepting these conclusions, we should test the assumptions in the usual way

LIGHTBULB Solution

par(mfrow = c(2, 2))

plot(model.full1)

436



14.4. Homogeneity of slopes

1.55 1.65 1.75
−

0.
10

Fitted values

R
es

id
ua

ls Residuals vs Fitted

49

1950

−2 −1 0 1 2

−
3

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals

49

1950

1.55 1.65 1.75

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
491950

0.00 0.10 0.20 0.30

−
4

LeverageS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance 1

0.5

Residuals vs Leverage
921950

Figure 14.2.: Model assumptions for model.full1

With respect to normality, things look O.K., although there are several points in the top right corner that appear to lie

off the line. We could also run a Wilk-Shapiro normality test and find W = 0.9764, p = 0.09329, also suggesting

this assumption is valid. Homoscedasticity seems fine too, but if you want further evidence of this, you can run one

of the tests. Here I use the Breusch-Pagan test, which is appropriate when some of the independent variables are

continuous (Levene’s test is for categorical independent variables only):

bptest(model.full1)

studentized Breusch-Pagan test

data: model.full1

BP = 0.99979, df = 3, p-value = 0.8013

Since the null is that the residuals are homoscedastic, and p is rather large, the test confirm the visual assessment.

Further, there is no obvious pattern in the residuals, which implies there is no problem with the assumption of

linearity. This too can be formally tested:

437



Chapter 14. ANCOVA and general linear model

resettest(model.full1, power = 2:3, type = "regressor", data = anc1dat)

RESET test

data: model.full1

RESET = 0.59861, df1 = 2, df2 = 86, p-value = 0.5519

The last assumption in this sort of analysis is that the covariate (in this case, lage ) has no measurement error. We

really have no way of knowing whether this assumption is justified, although multiple aging of fish by several different

investigators usually gives ages that are within 1-2 years of each other, which is within the 10% considered by most

to be the maximum for Type I modelling. Note that there is no “test” that you can do with the data to determine what

the error is, at least in this case. If we had replicate ages for individual fish, it could be estimated quantitatively

Fire Exercise

You will notice that there is one datum with a large studentized residual, i.e. an outlier (case 49). Eliminate this

datum from your data file and rerun the analysis. Do your conclusions change?

LIGHTBULB Tip

model.full.no49 <- lm(lfkl ~ sex + lage + sex:lage, data = anc1dat[c(-49), ])

Anova(model.full.no49, type = 3)

Sum Sq Df F value Pr(>F)

(Intercept) 0.6425466 1 895.9393626 0.0000000

sex 0.0003782 1 0.5273066 0.4696905

lage 0.0737792 1 102.8745821 0.0000000

sex:lage 0.0002248 1 0.3134569 0.5770053

Residuals 0.0623943 87 NA NA

So the conclusion does not change if the outlier is deleted (not surprising as Cook’s distance is low for this point

reflecting its low leverage). Since there is no good reason to delete this data point, and since (at least qualitatively)

our conclusions do not change, it is probably best to go with the full data set. A test of the assumptions for the refit

438



14.4. Homogeneity of slopes

model (with the outlier removed) shows that all are met, and no more outliers are detected. (I won’t report these

analyses, but you can and should do them just to assure yourself that everything is O.K.)

14.4.2. Case 2 - Size as a function of age (different slopes example)

Fire Exercise

The file anc3dat.csv records data on male sturgeon collected at two locations ( locate) , Lake of the Woods,

in northwestern Ontario, and the Churchill River in northern Manitoba. Using the same procedure as outlined

above (with locate as the categorical variable instead of sex ), test the null hypothesis that the slope of the

regression of lfkl on lage is the same in the two locations. What do you conclude?

anc3dat <- read.csv("data/anc3dat.csv")

myplot <- ggplot(data = anc3dat, aes(x = lage, y = log10(fklngth))) +

facet_grid(. ~ locate) +

geom_point() +

geom_smooth(method = lm, se = FALSE) +

geom_smooth(se = FALSE, color = "red") +

labs(

y = expression(log[10] ~ (Fork ~ length)),

x = expression(log[10] ~ (Age))

)

myplot

439



Chapter 14. ANCOVA and general linear model

LOFW        NELSON      

1.2 1.4 1.6 1.2 1.4 1.6

1.60

1.65

1.70

1.75

1.80

log10 (Age)

lo
g 1

0 
(F

or
k 

le
ng

th
)

Figure 14.3.: Longueur des esturgeons en fonction de l’age d’après anc3dat

model.full2 <- lm(lfkl ~ lage + locate + lage:locate, data = anc3dat)

Anova(model.full2, type = 3)

Sum Sq Df F value Pr(>F)

(Intercept) 0.6295064 1 1078.63230 0.0000000

lage 0.0777287 1 133.18483 0.0000000

locate 0.0096826 1 16.59072 0.0001012

lage:locate 0.0090901 1 15.57541 0.0001592

Residuals 0.0513582 88 NA NA

Longueur des esturgeons en fonction de l’age d’après anc3dat

In this case, we reject the null hypotheses that (1) the slopes of the regressions are the same in the two locations; and

(2) that the intercepts are the same in the two locations. In other words, if we want to predict the fork length of a

sturgeon of a particular age (accurately) we need to know from which location it came. The fact that we reject the

null hypothesis that the slopes of the lfkl - lage regressions are the same in both locations means that we should be

doing individual regressions for each location separately (that is in fact what the full model is fitting). But we are

jumping the gun here. Before you can trust these p values, you need to confirm that assumptions are met:

440



14.4. Homogeneity of slopes

LIGHTBULB Tip

par(mfrow = c(2, 2))

plot(model.full2)

1.60 1.70 1.80

−
0.

06

Fitted values

R
es

id
ua

ls Residuals vs Fitted

5468 58

−2 −1 0 1 2

−
2

Theoretical QuantilesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Q−Q Residuals

54 6858

1.60 1.70 1.80

0.
0

Fitted valuesS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Scale−Location
5468 58

0.00 0.10 0.20 0.30

−
2

LeverageS
ta

nd
ar

di
ze

d 
re

si
du

al
s

Cook's distance 0.5

0.5
Residuals vs Leverage

65

92

54

Figure 14.4.: Conditions d’applications du modèle model.full2

If you analyze the residuals (in the way described above), you will find that there is no problem with the linearity

assumption, nor the homoscedasticity assumption (BP = 1.2267, p = 0.268). However, Wilk-Shapiro test of normality

of residuals is suspicious (W=0.97, p = 0.03). Given the relatively large sample size (𝑁 = 92), this normality

test has high power and the magnitude of deviation from normality does not appear to be large. Considering the

robustness of GLM to non-normality with large samples, we should not be overly concerned with this violation.

Given that the assumptions appear sufficiently met, we can accept the results as calculated by R. All terms in the

model are significant (location, lage, and the interaction). This full model is equivalent to fitting separate regressions

for each location. To get the coefficients of these regression, one can either fit the two regressions on data subsets for

each location, or extract the fitted coefficients from the full model:

model.full2

Call:

441



Chapter 14. ANCOVA and general linear model

lm(formula = lfkl ~ lage + locate + lage:locate, data = anc3dat)

Coefficients:

(Intercept) lage locateNELSON

1.2284 0.3253 0.2207

lage:locateNELSON

-0.1656

By default, the variable locate in the model is internally encoded as 0 for the location that comes first alphabetically

(LofW) and 1 for the other (Nelson). So the regression equations for each location become:

For LofW:
𝑙𝑓𝑘𝑙 = 1.2284 + 0.3253 × 𝑙𝑎𝑔𝑒 + 0.2207 × 0 − 0.1656 × 0 × 𝑙𝑎𝑔𝑒

= 1.2284 + 0.3253 × 𝑙𝑎𝑔𝑒

For Nelson:
𝑙𝑓𝑘𝑙 = 1.2284 + 0.3253 × 𝑙𝑎𝑔𝑒 + 0.2207 × 1 − 0.1656 × 1 × 𝑙𝑎𝑔𝑒

= 1.4491 + 0.1597 × 𝑙𝑎𝑔𝑒

You can convince youself that this is the same as fitting 2 regressions separately.

by(anc3dat, anc3dat$locate, function(x) lm(lfkl ~ lage, data = x))

anc3dat$locate: LOFW

Call:

lm(formula = lfkl ~ lage, data = x)

Coefficients:

(Intercept) lage

1.2284 0.3253

------------------------------------------------------------

anc3dat$locate: NELSON

Call:

442



14.5. The ANCOVA model

lm(formula = lfkl ~ lage, data = x)

Coefficients:

(Intercept) lage

1.4491 0.1597

14.5. The ANCOVA model

If the test for homogeneity of slopes indicates that the two or more slopes are not significantly different, i.e. there is

no significant interaction between the categorical and continuous variable, then a single slope parameter can be fit.

How about the intercepts? Do they differ among levels of the categorical variable? There are two school of thoughts

on how to proceed to test for equality of intercepts when slopes are equal:

• The old school fits a reduced model, with the categorical and continuous variables, but no interactions (this is

the ANCOVA model, sensus stricto) and uses the partitioned sums of squares to test for significance, say with

the Anova() function. This approach is the one presented in many statistical textbooks.

• Others simply use the full model results, and test significance of each term from the partial sums of squares.

This approach has the advantage of being faster as only one model needs to be fitted to make all inferences.

However, this approach is less powerful.

In most practical cases, it does not matter unless one has very complex models with a large number of terms and

higher level interactions and that many of these terms are not significant. My suggestion is that you use the faster

approach first, and use the traditional approach only when you accept the null hypothesis for equal intercepts. Why?

Since the faster approach is less powerful, if you nevertheless reject H0, then this conclusion will not be changed,

only reinforced, by using the traditional approach.

Here I will compare the old school and the other approach. Recall that we want to assess equality of intercepts once

we determined that slopes are equal. Test for equality of intercepts when slopes differ (or, if you prefer, when there is

a significant interaction) are rarely directly meaningful, are often misinterpreted, and should rarely be conducted.

Going back to anc1dat.csv, comparing the relationships between lfkl and lage among sexes, we obtained the

following results for the full model with interactions

Anova(model.full1, type = 3)

443



Chapter 14. ANCOVA and general linear model

Sum Sq Df F value Pr(>F)

(Intercept) 0.6444361 1 794.8182143 0.0000000

sex 0.0004089 1 0.5043251 0.4794836

lage 0.0725916 1 89.5311705 0.0000000

sex:lage 0.0002730 1 0.3366921 0.5632277

Residuals 0.0713501 88 NA NA

We already concluded that the slope of the regression for males and females does not differ (the interaction sex:lage

is not significant). Note that the p-values associated with sex (0.4795) is not significant either.

For the old-school approach, one would fit a reduced model (the sensus stricto ANCOVA model):

model.ancova <- lm(lfkl ~ sex + lage, data = anc1dat)

Anova(model.ancova, type = 3)

Sum Sq Df F value Pr(>F)

(Intercept) 1.1348025 1 1410.123239 0.0000000

sex 0.0014899 1 1.851324 0.1770653

lage 0.1433772 1 178.162744 0.0000000

Residuals 0.0716231 89 NA NA

summary(model.ancova)

Call:

lm(formula = lfkl ~ sex + lage, data = anc1dat)

Residuals:

Min 1Q Median 3Q Max

-0.093992 -0.018457 -0.000876 0.022491 0.081161

Coefficients:

Estimate Std. Error t value Pr(>|t|)

444



14.5. The ANCOVA model

(Intercept) 1.225533 0.032636 37.552 <2e-16 ***

sexMALE -0.008473 0.006228 -1.361 0.177

lage 0.327253 0.024517 13.348 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.02837 on 89 degrees of freedom

Multiple R-squared: 0.696, Adjusted R-squared: 0.6892

F-statistic: 101.9 on 2 and 89 DF, p-value: < 2.2e-16

According to this test, sex is not significant and therefore we can conclude that the intercept does not vary significantly

between males and females. Note that the p-value is lower this time (0.1771 vs 0.4795), reflecting the higher power

of this old-school approach. However, the conclusion remains qualitatively the same: intercepts do not differ.

So we accept the null hypothesis that the intercepts are the same for the two sexes. Running the residual diagnostics,

we find no problems with linearity, independence, homogeneity of variances, and normality.

Fire Exercise

You will notice, in the above analysis that the residuals plots flag three data points (cases 19, 49, and 50) as

having high residuals. These points are a bit worrisome, and may be having a disproportionate effect on your

analysis. Eliminate these “outliers” and re-run the analysis. Now what do you conclude?

model.ancova.nooutliers <- lm(lfkl ~ sex + lage, data = anc1dat[c(-49, -50, -19), ])

Anova(model.ancova.nooutliers, type = 3)

Sum Sq Df F value Pr(>F)

(Intercept) 1.0916027 1 1896.520424 0.0000000

sex 0.0023238 1 4.037371 0.0476388

lage 0.1399208 1 243.094594 0.0000000

Residuals 0.0495000 86 NA NA

summary(model.ancova.nooutliers)

445



Chapter 14. ANCOVA and general linear model

Call:

lm(formula = lfkl ~ sex + lage, data = anc1dat[c(-49, -50, -19),

])

Residuals:

Min 1Q Median 3Q Max

-0.058397 -0.018469 -0.000976 0.020696 0.040288

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.224000 0.028106 43.549 <2e-16 ***

sexMALE -0.010823 0.005386 -2.009 0.0476 *

lage 0.328604 0.021076 15.591 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.02399 on 86 degrees of freedom

Multiple R-squared: 0.7706, Adjusted R-squared: 0.7653

F-statistic: 144.4 on 2 and 86 DF, p-value: < 2.2e-16

Well, well. Now we would, according to convention, reject the null hypothesis, and conclude that in fact, the intercepts

of the regressions for the two sexes are different! This is a qualitatively different result from that obtained using all

the data. Why? There are two possible reasons:

1. the “outliers” have significant impacts on the fitted regression lines, so that the intercepts of the lines change

depending on whether the “outliers” are included (or not);

2. the exclusion of the outliers increases the precision, i.e. reduces the standard error of the intercept estimates,

and therefore increases the likelihood that the two intercepts will in fact be “statistically” different.

(1) is unlikely, since none of the outliers had high leverage (hence Cook’s distances were not large), so (2) is more

likely, and you can verify this by fitting separate regressions for each sex with and without these three outliers.

If you do, you will notice that the estimated intercepts for each sex do not change very much, but the standard

errors of these intercepts change quite a lot.

446



14.5. The ANCOVA model

Fire Exercise

Fit separate regresssions by sex with vs. without the outliers. Pay attention to the intercepts.

Including all data.

by(

anc1dat,

anc1dat[, "sex"],

function(x) {

summary(lm(lfkl ~ lage, data = x))

}

)

anc1dat[, "sex"]: FEMALE

Call:

lm(formula = lfkl ~ lage, data = x)

Residuals:

Min 1Q Median 3Q Max

-0.093728 -0.020510 -0.000618 0.024066 0.078844

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.24264 0.04660 26.664 < 2e-16 ***

lage 0.31431 0.03512 8.949 4.16e-12 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.03011 on 52 degrees of freedom

Multiple R-squared: 0.6063, Adjusted R-squared: 0.5987

F-statistic: 80.09 on 1 and 52 DF, p-value: 4.16e-12

------------------------------------------------------------

447



Chapter 14. ANCOVA and general linear model

anc1dat[, "sex"]: MALE

Call:

lm(formula = lfkl ~ lage, data = x)

Residuals:

Min 1Q Median 3Q Max

-0.046663 -0.014875 -0.004275 0.013489 0.078910

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.19730 0.04209 28.45 < 2e-16 ***

lage 0.34300 0.03337 10.28 2.97e-12 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.02594 on 36 degrees of freedom

Multiple R-squared: 0.7458, Adjusted R-squared: 0.7388

F-statistic: 105.6 on 1 and 36 DF, p-value: 2.972e-12

Difference in intercept is indeed really small. Now let’s have a look when we exclude outliers.

by(

anc1dat,

anc1dat[, "sex"],

function(x) {

summary(lm(lfkl ~ lage, data = x[c(-49, -50, -19), ]))

}

)

anc1dat[, "sex"]: FEMALE

Call:

lm(formula = lfkl ~ lage, data = x[c(-49, -50, -19), ])

448



14.5. The ANCOVA model

Residuals:

Min 1Q Median 3Q Max

-0.092746 -0.020176 -0.000078 0.023779 0.079995

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.24029 0.04815 25.760 < 2e-16 ***

lage 0.31533 0.03614 8.724 1.53e-11 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.03021 on 49 degrees of freedom

Multiple R-squared: 0.6083, Adjusted R-squared: 0.6003

F-statistic: 76.11 on 1 and 49 DF, p-value: 1.526e-11

------------------------------------------------------------

anc1dat[, "sex"]: MALE

Call:

lm(formula = lfkl ~ lage, data = x[c(-49, -50, -19), ])

Residuals:

Min 1Q Median 3Q Max

-0.047429 -0.012818 -0.005274 0.013495 0.077538

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.19361 0.04188 28.50 < 2e-16 ***

lage 0.34662 0.03325 10.42 2.83e-12 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

449



Chapter 14. ANCOVA and general linear model

Residual standard error: 0.02574 on 35 degrees of freedom

Multiple R-squared: 0.7563, Adjusted R-squared: 0.7494

F-statistic: 108.6 on 1 and 35 DF, p-value: 2.835e-12

Differences in intercepts are really small and similar than in previous models but now the precision (i.e. standard

error) is much smaller for the models without outliers.

INFO Note

It is often the case that by eliminating outliers, new outliers appear. This is simply because the “outlier”

designation is usually based on a standardized residual: if you eliminate a couple of outliers, then the residual

sums of squares decreases, i.e. the “average” (absolute) residual decreases. Thus, points which were not “far

from the average” when the original average residual was comparatively large (i.e. were not “outliers”), may

now become so because the average residual has been decreased. Remember also that as you eliminate outliers,

N decreases, and the increase in R2 may be more than compensated for by decreased power. So be wary of

eliminating outliers!

14.6. Comparing model fits

As we have just seen, the process of fitting models to data is usually an iterative one. That is, there are, more often

than not, several competing models that may be used to fit the data and it is left to the analyst to decide which model

best balances goodness of fit (which we are usually trying to maximize) and complexity (which we are usually trying

to minimize). In general, the strategy to use in regression and anova is to choose a simpler model when doing so

does not reduce the goodness-of-fit by a significant amount. R can compute an F-statistic to compare the fit of two

models. The null hypothesis in this situation is that there is no difference in goodness of fit between the models.

Fire Exercise

Working with the Anc1dat data set, compare the fit of the ANCOVA and common simple regression models::

model.linear <- lm(lfkl ~ lage, data = anc1dat)

anova(model.ancova, model.linear)

Res.Df RSS Df Sum of Sq F Pr(>F)

89 0.0716231 NA NA NA NA

450



14.7. Bootstrap

Res.Df RSS Df Sum of Sq F Pr(>F)

90 0.0731130 -1 -0.0014899 1.851324 0.1770653

The anova() function can compare the differences in sum of squares and degrees of freedom between the simpler

and more complex models, takes the ratio of these two values to generate a mean square, and divides this by the

mean square of the more complex model to generate an F-statistic. In the above case, there is insufficient evidence

to reject the null hypothesis and we conclude that the simpler model, which is the simple linear regression, is the

best model for these data. (Because these models differ by only the presence vs. absence of a single factor (sex), the

P-value is the same as the p-value for sex in model 1.)

Fire Exercise

Repeat the above procedure with the ANC3DAT data, rerunning the full ANCOVA with interaction ( lfkl ~

lage + locate + lage:locate ) and without interaction ( lfkl ~ lage + locate ), saving the model

objects as you did above. Compare the fits of the two models. What do you conclude?

model.full.anc3dat <- lm(lfkl ~ lage + locate + lage:locate, data = anc3dat)

model.ancova.anc3dat <- lm(lfkl ~ lage + locate, data = anc3dat)

anova(model.full.anc3dat, model.ancova.anc3dat)

Res.Df RSS Df Sum of Sq F Pr(>F)

88 0.0513582 NA NA NA NA

89 0.0604482 -1 -0.0090901 15.57541 0.0001592

In this case there is sufficient evidence to reject the null hypothesis and conclude that the full model with interaction

is the best model to fit to the Anc3dat data. This is as we expected, given the fact that we found the interaction to be

significant the in original analysis of the data. While no new information is gain from this model comparison in this

case, this approach can be more usefully employed to compared nested models that differ in more than one term.

14.7. Bootstrap

451



Chapter 14. ANCOVA and general linear model

############################################################

######

# Bootstrap analysis

#

# Bootstrap analysis BCa confidence intervals

# Preferable when parameter distribution is far from normal

# Bootstrap 95% BCa CI for regression coefficients

library(boot)

# To simplify future modifications of the code in this file,

# copy the data to a generic mydata dataframe

mydata <- anc3dat

# create a myformula variable containing the formula for the model to be fitted

myformula <- as.formula(lfkl ~ lage + locate + lage:locate)

# function to obtain regression coefficients for each iteration

bs <- function(formula, data, indices) {

d <- data[indices, ]

fit <- lm(formula, data = d)

return(coef(fit))

}

# bootstrapping with 1000 replications

results <- boot(data = mydata, statistic = bs, R = 1000, formula = myformula)

# view results

results

boot_res <- summary(results)

rownames(boot_res) <- names(results$t0)

boot_res

op <- par(ask = TRUE)

for (i in 1:length(results$t0)) {

452



14.8. Permutation test

plot(results, index = i)

title(names(results$t0)[i])

}

par(op)

# get 95% confidence intervals

for (i in 1:length(results$t0)) {

cat("\n", names(results$t0)[i], "\n")

print(boot.ci(results, type = "bca", index = i))

}

14.8. Permutation test

############################################################

##########

# Permutation test

#

# using lmperm library

# To simplify future modifications of the code in this file,

# copy the data to a generic mydata dataframe

mydata <- anc3dat

# create a myformula variable containing the formula for the

# model to be fitted

myformula <- as.formula(lfkl ~ lage + locate + lage:locate)

library(lmPerm)

# Fit desired model on the desired dataframe

mymodel <- lm(myformula, data = mydata)

# Calculate p-values for each term by permutation

# Note that lmp centers numeric variable by default, so to

# get results that are

# consistent with standard models, it is necessary to set

# center=FALSE

453



Chapter 14. ANCOVA and general linear model

mymodelProb <- lmp(myformula,

data = mydata, center = FALSE,

perm = "Prob"

)

summary(mymodel)

summary(mymodelProb)

454



Part IV.

Generalized linear models

455



Chapter 15
Generalized linear model, glm

15.1. Lecture

Figure 15.1.: Dream pet dragon

m1 <- glm(fish ~ french_captain, data = dads_joke, family = poisson)

15.1.1. Distributions

15.1.1.1. Continuous linear

• Gaussian

456



15.2. Practical

15.1.1.2. Count data

• poisson

• negative binomial

• quasi-poisson

• generalized poisson

• conway-maxwell poisson

15.1.1.3. censored distribution

15.1.1.4. zero-inflated / hurdle distribution

• zero-inflated/zero-truncated poisson

• censored poisson

15.1.1.5. zero-truncated distribution

15.1.1.6. zero-one-inflated distribution

see https://cran.r-project.org/web/packages/brms/vignettes/brms_families.html see alo MCMCglmm coursenotes

for help on description and to add some plots about those distribution

15.2. Practical

Exclamation-Triangle Warning

This section need to be severely updated

15.2.1. Logistic regression

library(tidyverse)

457



Chapter 15. Generalized linear model, glm

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --

v dplyr 1.1.4 v readr 2.1.5

v forcats 1.0.0 v stringr 1.5.1

v ggplot2 3.5.1 v tibble 3.2.1

v lubridate 1.9.3 v tidyr 1.3.1

v purrr 1.0.2

-- Conflicts ------------------------------------------ tidyverse_conflicts() --

x dplyr::filter() masks stats::filter()

x dplyr::lag() masks stats::lag()

i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

library(DHARMa)

This is DHARMa 0.4.6. For overview type '?DHARMa'. For recent changes, type news(package = 'DHARMa')

library(performance)

mouflon <- read.csv("data/mouflon.csv")

mouflonc <- mouflon[order(mouflon$age),]

mouflonc$reproduction <- ifelse(mouflonc$age < 13, mouflonc$reproduction, 0)

mouflonc$reproduction <- ifelse(mouflonc$age > 4, mouflonc$reproduction, 1)

plot(reproduction ~ age, mouflonc)

458



15.2. Practical

2 4 6 8 10 12 14 16

0.
0

0.
4

0.
8

age

re
pr

od
uc

tio
n

plot(jitter(reproduction) ~ jitter(age), mouflonc)

2 4 6 8 10 12 14 16

−
0.

2
0.

2
0.

6
1.

0

jitter(age)

jit
te

r(
re

pr
od

uc
tio

n)

bubble <- data.frame(age = rep(2:16, 2),

reproduction = rep(0:1, each = 15),

size = c(table(mouflonc$age, mouflonc$reproduction)))

bubble$size <- ifelse(bubble$size == 0 , NA, bubble$size)

ggplot(data = bubble, aes(x = age, y = reproduction))+

459



Chapter 15. Generalized linear model, glm

geom_point(aes(size = size*10))

Warning: Removed 7 rows containing missing values or values outside the scale range

(`geom_point()`).

0.00

0.25

0.50

0.75

1.00

4 8 12 16
age

re
pr

od
uc

tio
n

size * 10

200

400

600

800

m1 <- glm(reproduction ~ age,

data = mouflonc,

family = binomial)

summary(m1)

Call:

glm(formula = reproduction ~ age, family = binomial, data = mouflonc)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.19921 0.25417 12.59 <2e-16 ***

age -0.36685 0.03287 -11.16 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

460



15.2. Practical

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 928.86 on 715 degrees of freedom

Residual deviance: 767.51 on 714 degrees of freedom

(4 observations deleted due to missingness)

AIC: 771.51

Number of Fisher Scoring iterations: 4

simulationOutput <- simulateResiduals(m1)

plot(simulationOutput)

0.0 0.4 0.8

0.
0

0.
4

0.
8

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.17112
Deviation  n.s.

Outlier test: p= 0.83181
Deviation  n.s.

Dispersion test: p= 0.448
Deviation  n.s.

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.4 0.8

0.
00

0.
50

1.
00

Residual vs. predicted
Quantile deviations detected (red curves)

Combined adjusted quantile test significant

DHARMa residual

plotting the model prediction on the link (latent) scale

mouflonc$logit_ypred <- 3.19921 -0.36685 * mouflonc$age

plot(logit_ypred ~ jitter(age), mouflonc)

points(mouflonc$age, mouflonc$logit_ypred, col="red", type = "l", lwd = 2)

461



Chapter 15. Generalized linear model, glm

2 4 6 8 10 12 14 16

−
2

0
1

2

jitter(age)

lo
gi

t_
yp

re
d

plotting on the observed scale

mouflonc$ypred <- exp(mouflonc$logit_ypred) / (1 + exp(mouflonc$logit_ypred)) # inverse of logit

plot(reproduction ~ jitter(age), mouflonc)

points(mouflonc$age, mouflonc$ypred, col="red", type = "l", lwd = 2)

2 4 6 8 10 12 14 16

0.
0

0.
4

0.
8

jitter(age)

re
pr

od
uc

tio
n

Enfin, pour se simplifier la vie, il est aussi possible de récupérer les valeurs prédites de y directement

462



15.2. Practical

plot(x,y)

myreg <- glm(y~x, family=binomial(link=logit))

ypredit <- myreg$fitted

o=order(x)

points(x[o],ypredit[o], col="red", type="l", lwd=2)

m2 <- glm(reproduction ~ age + mass_sept + as.factor(sex_lamb) + mass_gain + density + temp,

data = mouflon,

family = binomial)

summary(m2)

Call:

glm(formula = reproduction ~ age + mass_sept + as.factor(sex_lamb) +

mass_gain + density + temp, family = binomial, data = mouflon)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.622007 1.943242 0.835 0.403892

age -0.148567 0.033597 -4.422 9.78e-06 ***

mass_sept 0.029878 0.016815 1.777 0.075590 .

as.factor(sex_lamb)1 -0.428169 0.166156 -2.577 0.009969 **

mass_gain -0.094828 0.026516 -3.576 0.000348 ***

density -0.018132 0.003518 -5.154 2.55e-07 ***

temp 0.037244 0.138712 0.269 0.788313

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 916.06 on 674 degrees of freedom

Residual deviance: 845.82 on 668 degrees of freedom

463



Chapter 15. Generalized linear model, glm

(45 observations deleted due to missingness)

AIC: 859.82

Number of Fisher Scoring iterations: 4

check_model(m2)

250300350400
0 1

reproduction

C
ou

nt
s

Observed data Model−predicted data

Model−predicted intervals should include observed data points
Posterior Predictive Check

−0.6−0.30.00.30.6
40% 60% 80%

Estimated Probability of reproduction

A
ve

ra
ge

 r
es

id
ua

l

Within error bounds no yes

Points should be within error bounds
Binned Residuals

441
635

266
460 151

0.9

0.9−40−2002040
0.00 0.01 0.02 0.03 0.04 0.05

Leverage (hii)S
td

. R
es

id
ua

ls

Points should be inside the contour lines
Influential Observations

123510
ageas.factor(sex_lamb)densitymass_gainmass_septtemp

V
ar

ia
nc

e 
In

fla
tio

n
Fa

ct
or

 (
V

IF
, l

og
−

sc
al

ed
)

Low (< 5)

High collinearity (VIF) may inflate parameter uncertainty
Collinearity

Standard Uniform Distribution Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Dots should fall along the line
Uniformity of Residuals

simulationOutput <- simulateResiduals(m2)

plot(simulationOutput)

464



15.2. Practical

0.0 0.4 0.8

0.
0

0.
4

0.
8

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.86397
Deviation  n.s.

Outlier test: p= 1
Deviation  n.s.

Dispersion test: p= 0.96
Deviation  n.s.

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.4 0.8

0.
00

0.
50

1.
00

Residual vs. predicted
No significant problems detected

DHARMa residual

15.2.1.1. previous offspring sex effect

pred.data <- data.frame(

age = mean(mouflon$age),

mass_sept = mean(mouflon$mass_sept),

sex_lamb = c(0,1),

mass_gain = mean(mouflon$mass_gain),

density = mean(mouflon$density),

temp = mean(mouflon$temp, na.rm =TRUE))

predict(m2, newdata = pred.data)

1 2

0.6225895 0.1944205

15.2.2. Poisson regression

data on galapagos islands species richness model of total number of species model of proportion of native model of

density of species

465



Chapter 15. Generalized linear model, glm

Fit 3 models - model of total number of species - model of proportion of endemics to total - model of species

density

hist(rpois(10000,3))

Histogram of rpois(10000, 3)

rpois(10000, 3)

F
re

qu
en

cy

0 2 4 6 8 10

0
50

0
15

00

#

gala <- read.delim2("data/gala.txt")

plot(Species ~ Area, gala)

0 1000 2000 3000 4000

0
10

0
30

0

Area

S
pe

ci
es

466



15.2. Practical

plot(Species ~ log(Area), gala)

−4 −2 0 2 4 6 8

0
10

0
30

0

log(Area)

S
pe

ci
es

hist(gala$Species)

Histogram of gala$Species

gala$Species

F
re

qu
en

cy

0 100 200 300 400 500

0
5

10
15

20

modpl <- glm(Species ~ Area + Elevation + Nearest, family=poisson, gala)

res <- simulateResiduals(modpl)

testDispersion(res)

467



Chapter 15. Generalized linear model, glm

DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0
5

10
15

DHARMa nonparametric dispersion test via sd of residuals fitted vs.

simulated

data: simulationOutput

dispersion = 110.32, p-value < 2.2e-16

alternative hypothesis: two.sided

testZeroInflation(res)

468



15.2. Practical

DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 1

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
50

15
0

25
0

DHARMa zero-inflation test via comparison to expected zeros with

simulation under H0 = fitted model

data: simulationOutput

ratioObsSim = NaN, p-value = 1

alternative hypothesis: two.sided

mean(gala$Species)

[1] 85.23333

var(gala$Species)

[1] 13140.74

hist(rpois(nrow(gala),mean(gala$Species)))

469



Chapter 15. Generalized linear model, glm

Histogram of rpois(nrow(gala), mean(gala$Species))

rpois(nrow(gala), mean(gala$Species))

F
re

qu
en

cy

70 80 90 100

0
2

4
6

plot(modpl)

4.0 4.5 5.0 5.5 6.0

−
10

10
30

Predicted values

P
ea

rs
on

 R
es

id
ua

ls

glm(Species ~ Area + Elevation + Nearest)

Residuals vs Fitted

25

27

12

470



15.2. Practical

0.0 0.5 1.0 1.5 2.0

0
10

20
30

40

Theoretical Quantiles

S
td

. D
ev

ia
nc

e 
re

si
d.

glm(Species ~ Area + Elevation + Nearest)

Q−Q Residuals

12

16

25

4.0 4.5 5.0 5.5 6.0

0
1

2
3

4
5

Predicted values

S
td

. P
ea

rs
on

 r
es

id
.

glm(Species ~ Area + Elevation + Nearest)

Scale−Location
1225 16

Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced

Warning in sqrt(crit * p * (1 - hh)/hh): NaNs produced

471



Chapter 15. Generalized linear model, glm

0.0 0.2 0.4 0.6 0.8 1.0

−
30

−
10

10
30

Leverage

S
td

. P
ea

rs
on

 r
es

id
.

glm(Species ~ Area + Elevation + Nearest)

Cook's distance

1

Residuals vs Leverage

1612

23

472



Chapter 16
Frequency data and Poisson Regression

After completing this laboratory exercise, you should be able to:

• Create and manipulate data files in R to analyze count data

• Use R to test an external hypothesis about a particular population using count data.

• Use R to test for independence in two-way tables

• Use R to fit Poisson regression and log-linear models to count data

16.1. R packages and data

For this lab you need:

• R packages:

– vcd

– vcdExtra

– car

• data files

– USPopSurvey.csv

– loglin.csv

– sturgdat.csv

473



Chapter 16. Frequency data and Poisson Regression

16.2. Organizing the data: 3 forms

Some biological experiments yield count data, e.g., the number of plants infected by a plant pathogen under different

exposure regimes, the number of male and female turtles hatched under different incubation temperature treatments

(in turtles, sex is temperature dependent!), etc. Usually the statistical issue here is whether the proportion of

individuals in different categories (e.g., infected versus uninfected, male versus female, etc.) differs significantly

among treatments. To examine this question, we can to set up a data file that lists the number of individuals in each

category. There are 3 ways to do this. You should be able to decide which one is appropriate, and how to convert

between them with R.

The file USPopSurvey.csv contains the results of a 1980 U.S population survey of a mid-eastern town:

USPopSurvey <- read.csv("data/USPopSurvey.csv")

USPopSurvey

ageclass sex frequency

0-9 female 17619

10-19 female 17947

20-29 female 21344

30-39 female 19138

40-49 female 13135

50-59 female 11617

60-69 female 11053

70-79 female 7712

80+ female 4114

0-9 male 17538

10-19 male 18207

20-29 male 21401

30-39 male 18837

40-49 male 12568

50-59 male 10661

60-69 male 9374

70-79 male 5348

80+ male 1926

474



16.2. Organizing the data: 3 forms

Note that there are 18 lines and 3 columns in this file. Each line lists the number of individuals (frequency) of a

given sex and age class. There are (sum(USPopSurvey$frequency)) 239539 individuals that were classified into the

18 (2 sexes x 9 age classes) categories. This way of presenting data is the frequency form. It is a compact way to

present the data when there are only categorical variables.

When there are continuous variables, the frequency form can’t be utilized (or provides no gain since each observation

could possibly have a different values for the continuous variable(s)). Data have therefore to be stored in case

form where each observation (individual) represents one line in the data file, and each variable is a column.

Conveniently, the vcdExtra includes the expand.dft() function to convert from the frequency to case form.

For example, to create a data frame with 239539 lines and 2 columns (sex and ageclass):

USPopSurvey.caseform <- expand.dft(USPopSurvey, freq = "frequency")

head(USPopSurvey.caseform)

ageclass sex

0-9 female

0-9 female

0-9 female

0-9 female

0-9 female

0-9 female

tail(USPopSurvey.caseform)

ageclass sex

239534 80+ male

239535 80+ male

239536 80+ male

239537 80+ male

239538 80+ male

239539 80+ male

Finally, these data can also be represented in table form (contingency table) where each variable is represented by a

dimension of the n-dimensional table (here, for example, rows could represent each age class, and columns each sex),

475



Chapter 16. Frequency data and Poisson Regression

and the cells of the resulting table contain the frequencies. The table form can be created from the case or frequency

form by the xtabs() command with slightly different syntax:

# convert case form to table form

xtabs(~ ageclass + sex, USPopSurvey.caseform)

sex

ageclass female male

0-9 17619 17538

10-19 17947 18207

20-29 21344 21401

30-39 19138 18837

40-49 13135 12568

50-59 11617 10661

60-69 11053 9374

70-79 7712 5348

80+ 4114 1926

# convert frequency form to table form

xtabs(frequency ~ ageclass + sex, data = USPopSurvey)

sex

ageclass female male

0-9 17619 17538

10-19 17947 18207

20-29 21344 21401

30-39 19138 18837

40-49 13135 12568

50-59 11617 10661

60-69 11053 9374

70-79 7712 5348

80+ 4114 1926

476



16.3. Graphs for contingency tables and testing for independence

Table 16.4.: (#tab:unnamed-chunk-1)Tools for converting among different forms for categorical data.

From (Row) \ To (column) Case form Frequency form Table form

Case form xtabs(~ A + B) table(A, B)

Frequency form expand.dft(X) xtabs(count ~ A + B)

Table form expand.dft(X) as.data.frame(X)

16.3. Graphs for contingency tables and testing for independence

Contingency tables can be used to test for independence. By this we mean to answer the question: Is the classification

of observations according to one variable (say, sex) independent from the classification by another variable (say,

ageclass). In other words, is the proportion of males and females independent of age, or does it vary among age

classes?

The vcd includes a mosaic() function useful to graphically display contingency tables:

library(vcd)

USTable <- xtabs(frequency ~ ageclass + sex, data = USPopSurvey) # save the table form as USTable dataframe

# Mosaic plot of the contingency table

mosaic(USTable)

477



Chapter 16. Frequency data and Poisson Regression

sex

ag
ec

la
ss

80
+

70
−

7960
−

6950
−

5940
−

493
0−

392
0−

291
0−

19
0−

9

female male

Figure 16.1.: Mosaic plot of sex classes per age

Mosaic plots represent the proportion of observations in each combination of categories (here there are 18 categories,

2 sexes x 9 age classes). Categories with a higher proportion of observations are represented by larger rectangles.

Visually, one can see that males and females are approximately equal for young age classes, but that the proportion

of females increases quite a bit amongst the elders.

The Chi square test can be used to test the null hypothesis that the proportion of males and females does not differ

among age classes:

# Test of independence

chisq.test(USTable) # runs chi square test of independence of sex and age class

Pearson's Chi-squared test

data: USTable

X-squared = 1162.6, df = 8, p-value < 2.2e-16

From this we conclude there is ample evidence to reject the null hypothesis that ageclass and sex are independent,

which isn’t particularly surprising.

478



16.3. Graphs for contingency tables and testing for independence

The mosaic plot from the vcd can be shaded to show the categories that contribute most to the lack of indepen-

dence:

# Mosaic plot of the contingency table with shading

mosaic(USTable, shade = TRUE)

−18

 −4
  2

 18

Pearson
residuals:

p−value =
< 2.22e−16

sex

ag
ec

la
ss

80
+

70
−

79
60

−
69

50
−

59
40

−
49

30
−

3920
−

2910
−

190−
9

female male

Figure 16.2.: Mosaic plot of sex by age with colours

The shading of each rectangle is proportional to the extent that observed frequencies deviate from what would be

expected if sex and age class were independent. The age classes 40-49 and 50-59 have a sex ratio about equal to the

overall sex:ratio for the entire dataset, and appear in grey. There are more young males and old females than expected

if sex ratio did not change with age, and these rectangles are coded in blue. On the other hand, there are fewer young

females and old males than if sex ratio did not change with age, and these rectangles are red coded. Note that the

p-value printed on the right of the graph is for the chi-square test that assumes that observations are independent.

The estimation of p-value associated with the chi square statistic is less than ideal when expected frequencies are

small in some of the cells, particularly for 2x2 contingency tables. Two options are then preferred, depending on

the number of observations. For large samples, like in this example with more than 200,000 cases(!), a Monte

Carlo approach is suggested and can be obtained by adding simulate.p.value=TRUE as an argument to the

chisq.test() function

479



Chapter 16. Frequency data and Poisson Regression

# Monte-carlo estimation of p value (better for small n)

chisq.test(USTable, simulate.p.value = TRUE, B = 10000)

Pearson's Chi-squared test with simulated p-value (based on 10000

replicates)

data: USTable

X-squared = 1162.6, df = NA, p-value = 9.999e-05

Here, the simulation was done B=10000 times, and the chi square value observed with the data was never exceeded

so p is estimated as 1/10001=9.999e-05, which is much larger than the p-value estimated from the theoretical chi

square distribution (p< 2.2e-16). This difference in p-value is at least partly an artifact of the number of simulations.

To estimate p values as small as 1e-16, at least 1016 simulations must be run. And I am not THAT patient. For small

tables with relatively low expected frequencies, Fisher’s exact test can be run to test for independence. This result is

unbiased if row and column totals are fixed, but is conservative (i.e. it will incorrectly fail to reject the null more

often than expected) if row and/ or column totals are not fixed.

But this test will fail for large samples, like in this example:

# Fisher exact test for contingency tables (small samples and small tables)

fisher.test(USTable) # fails here because too many observations

Error in fisher.test(USTable): FEXACT error 40.

Out of workspace.

fisher.test(USTable, simulate.p.value = TRUE, B = 10000)

Fisher's Exact Test for Count Data with simulated p-value (based on

10000 replicates)

data: USTable

p-value = 9.999e-05

alternative hypothesis: two.sided

480



16.4. Log-linear models as an alternative to Chi-square test for contingency tables

16.4. Log-linear models as an alternative to Chi-square test for contingency

tables

By now, hopefully, you have learned to appreciate the flexibility and generality of general linear models and you

realize that the t-test is a special, simple, case of a linear model with one categorical independent variable. The

analysis of contingency tables by chi square test can similarly be generalized. Indeed, generalized linear models for

poisson distributed data can be used when the dependent variable are frequencies (count data) and the independent

variables can be categorical only (like for contingency tables, these are also called log- linear models), continuous

only (Poisson regression), or a combination of categorical and continuous independent variables (this, too is a Poisson

regression, but with added categorical variables, analogous to an ANCOVA sensu largo).

Such models predict the natural log frequency of observations given the independent variables. Like for linear

models assuming normality of residuals, one can assess the overall quality of the fit (by AIC for example), and the

significance of terms (say by comparing the fit of models including or excluding particular terms). One can even, if

desired, obtain estimates of the parameters for each model term, with confidence intervals and p-values for the null

hypothesis that the value of the parameter is 0.

The glm() function with the option family=poisson() allows the estimation, by maximum likelihood, of linear

models for count data. One “peculiarity” of fitting such models to contingency table data is that generally the only

terms of interest are the interactions. Going back to the population survey data in frequency form, with sex and

ageclass as independent variables, one can fit a glm model by:

mymodel <- glm(frequency ~ sex * ageclass, family = poisson(), data = USPopSurvey)

summary(mymodel)

Call:

glm(formula = frequency ~ sex * ageclass, family = poisson(),

data = USPopSurvey)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 9.776733 0.007534 1297.730 < 2e-16 ***

sexmale -0.004608 0.010667 -0.432 0.6657

ageclass10-19 0.018445 0.010605 1.739 0.0820 .

481



Chapter 16. Frequency data and Poisson Regression

ageclass20-29 0.191793 0.010179 18.842 < 2e-16 ***

ageclass30-39 0.082698 0.010441 7.921 2.36e-15 ***

ageclass40-49 -0.293697 0.011528 -25.477 < 2e-16 ***

ageclass50-59 -0.416508 0.011951 -34.850 < 2e-16 ***

ageclass60-69 -0.466276 0.012134 -38.428 < 2e-16 ***

ageclass70-79 -0.826200 0.013654 -60.511 < 2e-16 ***

ageclass80+ -1.454582 0.017316 -84.004 < 2e-16 ***

sexmale:ageclass10-19 0.018991 0.014981 1.268 0.2049

sexmale:ageclass20-29 0.007275 0.014400 0.505 0.6134

sexmale:ageclass30-39 -0.011245 0.014803 -0.760 0.4475

sexmale:ageclass40-49 -0.039519 0.016416 -2.407 0.0161 *

sexmale:ageclass50-59 -0.081269 0.017136 -4.742 2.11e-06 ***

sexmale:ageclass60-69 -0.160154 0.017633 -9.083 < 2e-16 ***

sexmale:ageclass70-79 -0.361447 0.020747 -17.422 < 2e-16 ***

sexmale:ageclass80+ -0.754343 0.029598 -25.486 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 5.3611e+04 on 17 degrees of freedom

Residual deviance: 6.5463e-12 on 0 degrees of freedom

AIC: 237.31

Number of Fisher Scoring iterations: 2

Fitting the full model, with the sex:ageclass interaction, allows the proportion of males and females to vary among

ageclass levels, and hence to estimate exactly the frequencies for each combination of sex and ageclass (note that the

deviance residuals are all 0’s and that the Residual deviance is also approximately zero).

A masochist can use the coefficient table to obtain the predicted values for sex and ageclass categories by summing

the appropriate coefficients. The predicted values, like for multiway ANOVA model, are obtained by combining the

coefficients. Remembering that the first level of a factor (alphabetically) is used as a reference, here the coefficient

for the intercept (9.776733) is the predicted value for the natural log of the number of observations for females in the

482



16.5. Testing an external hypothesis

first alphabetical ageclass (0 to 9). Indeed e9.776733 is approximately equal to 17619, the observed number of females

in that age class. For example, for males in the 80+ ageclass, calculate the antilog of the coefficient for the intercept

(for female in the youngest age class) plus the coefficient for sexmale (equal to the difference between ln frequency of

females and males overall), plus the coefficient for the ageclass 80+ corresponding in the difference in frequency on

average between the oldest and reference ageclass, plus the coefficient for the interaction terms sexmale:ageclass80+

(corresponding to the difference in the proportion of male for this ageclass compared to the youngest ageclass), so

𝑙𝑛(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) = 9.776733 − 0.004608 − 1.454582 − 0.754343 = 7.5632, and the frequency is equal to e7.5632

= 1926

Although there are numerous p values in this output, they are not really helpful. To test whether the effect of sex on

observed frequency is the same across ageclass levels, i.e is sex and age are independent, one needs to fit a model

where the interaction sex:ageclass is removed, and see how badly this affects the fit. The Anova() function of the

car package provides a handy shortcut:

Anova(mymodel, type = 3, test = "LR")

LR Chisq Df Pr(>Chisq)

sex 1.866202e-01 1 0.6657446

ageclass 2.107464e+04 8 0.0000000

sex:ageclass 1.182152e+03 8 0.0000000

The use of type=3 and test=“LR” ensures that the test performed to compare the full and reduced models is the

Likelihood Ratio Chi- Square using the Residual deviance, and that it is a partial test, not a sequential one.

According to these tests, there is no main effect of sex (p=0.667) but there is a main effect of ageclass and a significant

sex:ageclass interaction. The significant interaction means that the effect of sex on frequency varies with ageclass, or

that the sex ratio varies with age. The main effect of ageclass means that the frequency of individuals varies with

age (i.e some ageclass are more populous than others), The absence of a main effect of sex suggests that there are

approximately the same frequency of males and females in this sample (although, since there is an interaction, you

have to be careful in making this assertion. It is “true” overall, but appears incorrect for individual age categories).

16.5. Testing an external hypothesis

The above test of independence is that of an internal hypothesis because the proportions used to calculate the expected

frequencies assuming independence of sex and ageclass come from the data (i.e. the overall proportion of males in

483



Chapter 16. Frequency data and Poisson Regression

females in the entire dataset, and the proportions of individuals in each ageclass, males and females combined.

To test the (external) null hypothesis that the sex ratio is 1:1 for the youngest individuals (ageclass 0-9), one has to

compute the 2 X 2 table of observed and expected frequencies. The expected frequencies are obtained simply by

summing male and female frequencies and dividing by two.

R program to create and analyze a 2x2 table to test an external hypothesis

### Produce a table of obs vs exp for 0-9 age class

Popn0.9 <- rbind(c(17578, 17578), c(17619, 17538))

### Run X2 test on above table

chisq.test(Popn0.9, correct = F) ### X2 without Yates

chisq.test(Popn0.9) ### X2 with Yates

Fire Exercise

Test the null hypothesis that the proportion of male and female at birth is equal. What is your conclusion? Do

you think the data is appropriate to test this hypothesis?

LIGHTBULB Solution

chisq.test(Popn0.9, correct = F)

Pearson's Chi-squared test

data: Popn0.9

X-squared = 0.093309, df = 1, p-value = 0.76

chisq.test(Popn0.9)

Pearson's Chi-squared test with Yates' continuity correction

data: Popn0.9

X-squared = 0.088758, df = 1, p-value = 0.7658

484



16.6. Poisson regression to analyze multi-way tables

In the past, for 2 X 2 tables Yates’s correction was frequently employed (first test above, but it has since been shown to

be overly conservative and is no longer recommended (although it doesn’t affect the results in this particular instance).

Better is a Fisher’s exact test if the total number of cases is <200 (which is not the case here), or a randomization.

Given that we cannot use a Fisher’s exact test here we are using a Yate’s correction.

These data are not particularly good for testing the null hypothesis that the sex ratio at birth is 1:1 because the first

age category is too coarse. It is entirely possible that at birth there is an unequal sex-ratio, but there is compensatory

age-specific mortality (e.g. more males at birth, but reduced survivorship among males in the first 9 years of life

relative to females). In this case, the sex ratio at birth is NOT 1:1, but we still accept the null hypothesis based on age

class 0-9.

16.6. Poisson regression to analyze multi-way tables

loglin <- read.csv("data/loglin.csv")

# Convert from frequency form to table form for mosaic plot

loglinTable <- xtabs(frequency ~ temperature + light + infected, data = loglin)

# Create mosaic plot to look at data

mosaic(loglinTable, shade = TRUE)

−4.8
−4.0

−2.0

 0.0

 2.0

 4.0

 5.5

Pearson
residuals:

p−value =
< 2.22e−16

light

te
m

pe
ra

tu
re

in
fe

ct
ed

LO
W

   
   

   

Y
E

S
   

   
   N

O
   

   
   

 

H
IG

H
   

   
  

HIGH        LOW         

Y
E

S
   

   
   N

O
   

   
   

 

Figure 16.3.: Proportion de plantes infectées en fonction de la température er la lumière

485



Chapter 16. Frequency data and Poisson Regression

The principle of testing for independence through interactions can be extended to multi-way tables, that is, tables in

which more than two criteria are used to classify observations. For example, suppose that we wanted to test the effect

of temperature (two levels: high and low) and light (two levels: high irradiance and low irradiance) on the number of

plants infected by a plant pathogen (two levels: infected and non-infected). In this case we would need a three-way

table with three criteria (infection status, temperature, and light).

Fitting log linear models to frequency data involves testing of different models by comparing them with the full

(saturated) model. A series of simplified models is produced, each model missing one of the interactions of interest,

and the fit of each simplified model is compared to that of the full model. If the fit does not change much, then

the term eliminated does not have much influence on the frequencies, whereas if the resulting model provides a

significantly worse fit, then the term is important. As with two-way tables, the terms of interest are the interactions,

not the main effects, if what we are testing for is independence of different factors.

The file loglin.csv contains the frequencies ( frequency ) of infected and non-infected plants ( infected ) at

low and high temperature ( temperature) and low and high light ( light). To graph the data and determine if

infected status depends on light and temperature, one can construct a mosaic plot and a loglinear model.

# Convert from frequency form to table form for mosaic plot

loglinTable <- xtabs(frequency ~ temperature + light + infected, data = loglin)

# Create mosaic plot to look at data

library(vcd)

mosaic(loglinTable, shade = TRUE)

−4.8
−4.0

−2.0

 0.0

 2.0

 4.0

 5.5

Pearson
residuals:

p−value =
< 2.22e−16

light

te
m

pe
ra

tu
re

in
fe

ct
ed

LO
W

   
   

   

Y
E

S
   

   
   N

O
   

   
   

 

H
IG

H
   

   
  

HIGH        LOW         

Y
E

S
   

   
   N

O
   

   
   

 

486



16.6. Poisson regression to analyze multi-way tables

The symmetrical experimental design with the same number of observations made at the two levels of light and

of temperature is apparent in the above plot in the overall equal area occupied by the observations in each of the

four quadrants. What is of interest, the infected status, appears to vary among the quadrants (i.e. levels of light and

temperature). For example, the red rectangles in the lower left and upper right quadrants indicates that there were

fewer infected plants at high light and low temperature (bottom left), and fewer uninfected plants at low light and

high temperature than if the infected level was not affected by light and temperature. The p-value at the bottom of the

color scale represents a test of independence equivalent to testing the full model against a reduced model including

only the main effect of temperature, light, and infected status on the (ln) number of observations.

# Fit full model

full.model <- glm(frequency ~ temperature * light * infected, family = poisson(), data = loglin)

# Test partial effect of terms in full model

Anova(full.model, type = 3, test = "LR")

LR Chisq Df Pr(>Chisq)

temperature 9.178563 1 0.0024487

light 13.282863 1 0.0002678

infected 0.000000 1 0.9999999

temperature:light 5.675769 1 0.0172008

temperature:infected 29.061158 1 0.0000001

light:infected 20.268735 1 0.0000067

temperature:light:infected 1.083963 1 0.2978126

The probabilities associated with each term in the full model are here calculated by comparing the fit of the full

model to that of a model with this particular term removed. As is typical in log-linear model analyses, many of the

tests here are not interesting. If the biological question is about how infected status varies with other conditions, then

the only informative terms are the interaction terms involving infected status.

There are therefore only 3 terms of interest:

1. temperature:infected significant interaction implies that infection status is not independent of temperature.

Indeed the mosaic plot shows that the proportion of infected cases is higher at high temperature.

2. light:infected significant interaction implies that infection status is not independent of light. The mosaic

plot also indicates that the proportion of infected plants is larger at low light levels.

487



Chapter 16. Frequency data and Poisson Regression

3. temperature:light:infected 3 way-interaction is not significant. This implies that the previous 2 effects

do not vary between levels of the third variable. So there is no evidence that the effect of light on infection

status varies at the two temperatures, or that the effect of temperature on infection status varies between the

two light levels. We should therefore drop this term and refit before evaluating the 2-way interactions (small

increase in power).

16.7. Exercice

We will now work with the sturgdat data set to test the hypothesis that number of fish caught is independent of

location, year, and gender. Before the analysis, the data will have to be reshaped to be in suitable format for fitting a

log-linear model.

Fire Exercise

Open sturgdat.csv , then use the table() function to summarize the data according to number of individuals

by sex , location , and year . Save this object as sturgdat.table . Make a mosaic plot of the data.

sturgdat <- read.csv("data/sturgdat.csv")

# Reorganize data from case form to table form

sturgdat.table <- with(sturgdat, table(sex, year, location))

# display the table

sturgdat.table

, , location = CUMBERLAND

year

sex 1978 1979 1980

FEMALE 10 30 11

MALE 14 14 6

, , location = THE_PAS

year

sex 1978 1979 1980

488



16.7. Exercice

FEMALE 5 12 38

MALE 16 12 18

# Create data frame while converting from table form to frequency form

sturgdat.freq <- as.data.frame(sturgdat.table)

# display data frame

sturgdat.freq

sex year location Freq

FEMALE 1978 CUMBERLAND 10

MALE 1978 CUMBERLAND 14

FEMALE 1979 CUMBERLAND 30

MALE 1979 CUMBERLAND 14

FEMALE 1980 CUMBERLAND 11

MALE 1980 CUMBERLAND 6

FEMALE 1978 THE_PAS 5

MALE 1978 THE_PAS 16

FEMALE 1979 THE_PAS 12

MALE 1979 THE_PAS 12

FEMALE 1980 THE_PAS 38

MALE 1980 THE_PAS 18

Frequency of female and male sturgeon as a function of year and location

# Look at the data as mosaic plot

# mosaic using the table created above

mosaic(sturgdat.table, shade = TRUE)

489



Chapter 16. Frequency data and Poisson Regression

−2.4
−2.0

 0.0

 2.0

 3.2

Pearson
residuals:

p−value =
2.1011e−07

year

se
x

lo
ca

tio
n

M
A

LE
   

   
  

T
H

E
_P

A
S

   
  

C
U

M
B

E
R

LA
N

D
  

F
E

M
A

LE
   

   

1978 1979 1980

T
H

E
_P

A
S

   
  

C
U

M
B

E
R

LA
N

D
  

Figure 16.4.: Frequency of female and male sturgeon as a function of year and location

callout-caution # Exercise Using the frequency form of the table, fit the full log-linear model just as we did with

the loglin data set and produce the anova table with chi square statistics for the terms in the model. Is the 3-way

interaction significant ( location:year:sex )? Does sex ratio change between locations or among years? ::

# Fit full model

full.model <- glm(Freq ~ sex * year * location, data = sturgdat.freq, family = "poisson")

summary(full.model)

Call:

glm(formula = Freq ~ sex * year * location, family = "poisson",

data = sturgdat.freq)

Coefficients:

Estimate Std. Error z value

(Intercept) 2.30259 0.31623 7.281

sexMALE 0.33647 0.41404 0.813

year1979 1.09861 0.36515 3.009

year1980 0.09531 0.43693 0.218

490



16.7. Exercice

locationTHE_PAS -0.69315 0.54772 -1.266

sexMALE :year1979 -1.09861 0.52554 -2.090

sexMALE :year1980 -0.94261 0.65498 -1.439

sexMALE :locationTHE_PAS 0.82668 0.65873 1.255

year1979:locationTHE_PAS -0.22314 0.64550 -0.346

year1980:locationTHE_PAS 1.93284 0.64593 2.992

sexMALE :year1979:locationTHE_PAS -0.06454 0.83986 -0.077

sexMALE :year1980:locationTHE_PAS -0.96776 0.87942 -1.100

Pr(>|z|)

(Intercept) 3.3e-13 ***

sexMALE 0.41641

year1979 0.00262 **

year1980 0.82732

locationTHE_PAS 0.20569

sexMALE :year1979 0.03658 *

sexMALE :year1980 0.15011

sexMALE :locationTHE_PAS 0.20950

year1979:locationTHE_PAS 0.72957

year1980:locationTHE_PAS 0.00277 **

sexMALE :year1979:locationTHE_PAS 0.93875

sexMALE :year1980:locationTHE_PAS 0.27114

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 5.7176e+01 on 11 degrees of freedom

Residual deviance: -2.6645e-15 on 0 degrees of freedom

AIC: 77.28

Number of Fisher Scoring iterations: 3

491



Chapter 16. Frequency data and Poisson Regression

Anova(full.model, type = 3)

LR Chisq Df Pr(>Chisq)

sex 0.6697879 1 0.4131256

year 13.8894797 2 0.0009637

location 1.6989904 1 0.1924201

sex:year 4.6930229 2 0.0957024

sex:location 1.6322742 1 0.2013888

year:location 25.2580075 2 0.0000033

sex:year:location 1.6677328 2 0.4343666

This is a three-way table, with three factors: sex, location and year . Thus, the “staturated” or “full” loglinear model

includes 7 terms: the three main effects ( sex, location and year ), the three 2-way interactions ( sex:year, sex:location

and year: location ) and the one 3-way interaction ( sex:year:location ). The null deviance is 57.17574, the residual

deviance of the full model is, not surprisingly, 0. The deviance explained by the three-way interaction, 1.66773

(which is, in fact, a chi square statistic with two degrees of freedom), is not significant, and we are therefore justified

in fitting the model without this term.

What does this mean? It means that, if there are any 2-way interactions, they do not depend on the level of the third

variable. For example, if indeed the sex ratio of sturgeon varies among years (a sex:year interaction), that it varies in

the same manner at the two locations. This in turn means that in testing for two-way interactions, we are (statistically)

justified in pooling (summing) over the levels of the third variable. This is analog to what can be done in multiway

ANOVA when high order interactions are not significant. For example, in testing for a sex:location effect, we can

pool over year , to produce a 2 X 2 table whose cell counts are the total number of sturgeon of a given sex at a given

location captured over the three years 1978-1980. By increasing cell counts, we increase statistical power, which is

desirable.

• If we adjust the model without the 3-way interaction, we get:

LIGHTBULB Solution

o2int.model <- glm(Freq ~ sex + year + location + sex:year + sex:location + year:location, data = sturgdat.freq, family = "poisson")

Anova(o2int.model, type = 3)

492



16.7. Exercice

LR Chisq Df Pr(>Chisq)

sex 1.869079 1 0.1715807

year 15.128861 2 0.0005186

location 1.544449 1 0.2139568

sex:year 15.584729 2 0.0004129

sex:location 2.176220 1 0.1401583

year:location 28.349871 2 0.0000007

We can see that the sex:location interaction does not explain a significant portion of the deviance, whereas the two

others do. Sex ratio does not vary among locations, but it does among years. The year:location is also significant

(see below for its meaning).

Should you try to simplify the model further? Real statisticians are divided on this question. All agree that keeping

insignificant terms in the model may cost some power. On the other hand, removing non significant interactions can

lead to difficulty interpreting answers when observations are not well balanced (i.e. there is colinearity among model

terms).

• Refit the model, this time excluding the sex:location interaction.

LIGHTBULB Solution

o2int.model2 <- glm(Freq ~ sex + year + location + sex:year + year:location, data = sturgdat.freq, family = "poisson")

Anova(o2int.model2, type = 3)

LR Chisq Df Pr(>Chisq)

sex 5.0969711 1 0.0239677

year 16.1226325 2 0.0003155

location 0.2001484 1 0.6546011

sex:year 13.9882526 2 0.0009173

year:location 26.7533952 2 0.0000016

Now the remaining two interactions are significant. It looks as though this is the “best” model. On the basis of the

above analysis, the simplest model is:

493



Chapter 16. Frequency data and Poisson Regression

𝑙𝑛[𝑓(𝑖𝑗𝑘)] = 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 + 𝑠𝑒𝑥 + 𝑦𝑒𝑎𝑟 + 𝑠𝑒𝑥 ∶ 𝑦𝑒𝑎𝑟 + 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∶ 𝑦𝑒𝑎𝑟

How are these effects interpreted biologically? Remember, as in tests of independence, we are not interested in

main effects, only the interactions. For example, the main effect location tells us that the total number of sturgeon

caught (pooled over both sexes and all years 1978-1980) varied between the two locations. This is not surprising and

uninteresting given that we have no information on the sampling effort. However, the sex:year interaction tells us that

over the 3 year period, the sex-ratio of the harvest changed, and it changed in more or less the same fashion in the

two locations, which is a rather interesting result. The location:year effect tells us that the total number of sturgeon

harvested not only changed over the years, but that this change varied between locations. This could be caused by a

difeerent fishing effort at one station over the years, or to a negative impact at one station only on one year. Whatever

the cause, it affected males and females similarly since the 3 way interaction is not significant.

494



Part V.

Mixed models

495



Chapter 17
Introduction to linear mixed models

17.1. Lecture

17.1.1. Testing fixed effects

making a note that LRT on fixed effects should not be the preferred method and more inportantly should eb done

using ML and not REML Fitsee pinheiro & Bates 2000 p76

17.1.2. Shrinkage

The following is an example of shrinkage, sometimes called partial-pooling, as it occurs in mixed effects models.

It is often the case that we have data such that observations are clustered in some way (e.g. repeated observations for

units over time, students within schools, etc.). In mixed models, we obtain cluster-specific effects in addition to those

for standard coefficients of our regression model. The former are called random effects, while the latter are typically

referred to as fixed effects or population-average effects.

In other circumstances, we could ignore the clustering, and run a basic regression model. Unfortunately this assumes

that all observations behave in the same way, i.e. that there are no cluster-specific effects, which would often be an

untenable assumption. Another approach would be to run separate models for each cluster. However, aside from

being problematic due to potentially small cluster sizes in common data settings, this ignores the fact that clusters

are not isolated and potentially have some commonality.

Mixed models provide an alternative where we have cluster specific effects, but ‘borrow strength’ from the population-

average effects. In general, this borrowing is more apparent for what would otherwise be more extreme clusters, and

those that have less data. The following will demonstrate how shrinkage arises in different data situations.

496



17.1. Lecture

17.1.2.1. Analysis

For the following we run a basic mixed model with a random intercept and random slopes for a single predictor

variable. There are a number of ways to write such models, and the following does so for a single cluster 𝑐 and

observation 𝑖. 𝑦 is a function of the covariate 𝑥, and otherwise we have a basic linear regression model. In this

formulation, the random effects for a given cluster (𝑢∗𝑐) are added to each fixed effect (intercept 𝑏0 and the effect of

𝑥, 𝑏1). The random effects are multivariate normally distributed with some covariance. The per observation noise 𝜎

is assumed constant across observations.

𝜇𝑖𝑐 = (𝑏0 + u0𝑐) + (𝑏1 + u1𝑐) ∗ 𝑥𝑖𝑐

u0, u1 ∼ 𝒩(0, Σ)

𝑦 ∼ 𝒩(𝜇, 𝜎2)

Such models are highly flexible and have many extensions, but this simple model is enough for our purposes.

17.1.2.2. Data

Default settings for data creation are as follows:

• obs_per_cluster (observations per cluster) = 10

• n_cluster (number of clusters) = 100

• intercept (intercept) = 1

• beta (coefficient for x) = .5

• sigma (observation level standard deviation) = 1

• sd_int (standard deviation for intercept random effect)= .5

• sd_slope (standard deviation for x random effect)= .25

• cor (correlation of random effect) = 0

• balanced (fraction of overall sample size) = 1

• seed (for reproducibility) = 1024

In this setting, 𝑥 is a standardized variable with mean zero and standard deviation of 1. Unless a fraction is provided

for balanced, the 𝑁, i.e. the total sample size, is equal to n_cluster * obs_per_cluster. The following is the

497



Chapter 17. Introduction to linear mixed models

function that will be used to create the data, which tries to follow the model depiction above. It requires the tidyverse

package to work.

17.1.2.3. Run the baseline model

We will use lme4 to run the analysis. We can see that the model recovers the parameters fairly well, even with the

default of only 1000 observations.

df <- create_data()

library(lme4)

Loading required package: Matrix

Attaching package: 'Matrix'

The following objects are masked from 'package:tidyr':

expand, pack, unpack

mod <- lmer(y ~ x + (x | cluster), df)

summary(mod, cor = F)

Linear mixed model fit by REML ['lmerMod']

Formula: y ~ x + (x | cluster)

Data: df

REML criterion at convergence: 3012.2

Scaled residuals:

Min 1Q Median 3Q Max

-2.9392 -0.6352 -0.0061 0.6156 2.8721

498



17.1. Lecture

Random effects:

Groups Name Variance Std.Dev. Corr

cluster (Intercept) 0.29138 0.5398

x 0.05986 0.2447 0.30

Residual 0.99244 0.9962

Number of obs: 1000, groups: cluster, 100

Fixed effects:

Estimate Std. Error t value

(Intercept) 0.93647 0.06282 14.91

x 0.54405 0.04270 12.74

17.1.2.4. Visualize the baseline model

Now it is time to visualize the results. We will use gganimate to bring the shrinkage into focus. We start with the

estimates that would be obtained by a ‘regression-by-cluster’ approach or a linear regression for each cluster. The

movement shown will be of those cluster-specific estimates toward the mixed model estimates. On the x axis is the

estimate for the intercepts, on the y axis are the estimated slopes of the x covariate.

499



Chapter 17. Introduction to linear mixed models

We see more clearly what the mixed model does. The general result is that cluster-specific effects (lighter color)

are shrunk back toward the population-average effects (the ‘black hole’), as the imposed normal distribution for the

random effects makes the extreme values less probable. Likewise, those more extreme cluster-specific effects, some

of which are not displayed as they are so far from the population average, will generally have the most shrinkage

imposed. In terms of prediction, it is akin to introducing bias for the cluster specific effects while lowering variance

for prediction of new data, and allows us to make predictions on new categories we have not previously seen - we

just assume an ‘average’ cluster effect, i.e. a random effect of 0.

500



17.2. Practical

17.1.2.5. Summary

Mixed models incorporate some amount of shrinkage for cluster-specific effects. Data nuances will determine the

relative amount of ‘strength borrowed’, but in general, such models provide a good way for the data to speak for itself

when it should, and reflect an ‘average’ when there is little information. An additional benefit is that thinking about

models in this way can be seen as a precursor to Bayesian approaches, which can allow for even more flexibility via

priors, and more control over how shrinkage is added to the model.

17.2. Practical

17.2.1. Overview

This practical is intended to get you started fitting some simple mixed models with so called random intercepts. The

tutorial is derived from one that accompanied the paper (Houslay and Wilson 2017), “Avoiding the misuse of BLUP

in behavioral ecology”. Here, you will be working through a simplified version in which I have taken more time to

cover the basic mixed models and don’t cover multivariate models which were really the main point of that paper. So

if you find this material interesting don’t worry we will go through a more advanced version of the original paper

on multivariate models in chapter XX. The original version will be worth a work through to help you break into

multivariate mixed models anyway! Here we will:

• Learn how to fit - and interpret the results of - a simple univariate mixed effect model

• See how to add fixed and random effects to your model, and to test their significance in the normal frequentists

sense

We are going to use the lme4 (Bates et al. 2015) which is widely used and great for simple mixed models.

However, since, for philosophical reasons, lme4 does not provide any p-values for either fixed or random effects, we

are going to use the lmerTest (Kuznetsova et al. 2017), which add a bunch a nice goodies to lme4 For slightly

more complex models, including multivariate ones, generalised models, and random effects of things like shared

space, pedigree, phylogeny I tend to use different like MCMCglmm (Hadfield 2010) (which is Bayesian, look at

Jarrod Hadfield’s excellent course notes (Hadfield 2010)) or ASReml-R (The VSNi Team 2023) (which is likelihood

based/frequentist but sadly is not free).

17.2.2. R packages needed

First we load required libraries

501

https://doi.org/10.1093/beheco/arx023
https://doi.org/10.1093/beheco/arx023


Chapter 17. Introduction to linear mixed models

library(lmerTest)

library(performance)

library(tidyverse)

library(rptR)

17.2.3. The superb wild unicorns of the Scottish Highlands

Unicorns, a legendary animal and also symbol or Scotland, are frequently described as extremely wild woodland

creature but also a symbol of purity and grace. Here is one of most accurate representation of the lengendary

animal.

Figure 17.1.: The superb unicorn of the Scottish Highlands

Despite their image of purity and grace, unicorns (Unicornus legendaricus) are raging fighter when it comes to

compete for the best sweets you can find at the bottom of rainbows (unicorn favourite source of food).

We want to know:

• If aggressiveness differs among individuals

• If aggressive behaviour is plastic (change with the environment)

• If aggressive behaviour depends on body condition of focal animal

502



17.2. Practical

With respect to plasticity, we will focus on rival size as an ‘environment’. Common sense, and animal-contest theory,

suggest a small animal would be wise not to escalate an aggressive contest against a larger, stronger rival. However,

there are reports in the legendary beasty literature that they get more aggressive as rival size increases. Those reports

are based on small sample sizes and uncontrolled field observations by foreigners Munro baggers enjoying their

whisky after a long day in the hills.

17.2.3.1. Experimental design

Here, we have measured aggression in a population of wild unicorns. We brought some (n=80) individual into the lab,

tagged them so they were individually identifiable, then repeatedly observed their aggression when presented with

model ‘intruders’ (animal care committe approved). There were three models; one of average unicorn (calculated as

the population mean body length), one that was build to be 1 standard deviation below the population mean, and one

that was 1 standard deviation above.

Data were collected on all individuals in two block of lab work. Within each block, each animal was tested 3 times,

once against an ‘intruder’ of each size. The test order in which each animal experienced the three instruder sizes was

randomised in each block. The body size of all focal individuals was measured at the beginning of each block so we

know that too (and have two separate measures per individual).

17.2.3.2. looking at the data

Let’s load the data file unicorns_aggression.csv in a R object named unicorns and make sure we understand

what it contains

LIGHTBULB Solution

unicorns <- read.csv("data/unicorns_aggression.csv")

You can use summary(unicorns) to get an overview of the data and/or str(unicorns) to see the structure

in the first few lines. This data frame has 6 variables:

str(unicorns)

'data.frame': 480 obs. of 6 variables:

$ ID : chr "ID_1" "ID_1" "ID_1" "ID_1" ...

$ block : num -0.5 -0.5 -0.5 0.5 0.5 0.5 -0.5 -0.5 -0.5 0.5 ...

$ assay_rep : int 1 2 3 1 2 3 1 2 3 1 ...

503



Chapter 17. Introduction to linear mixed models

$ opp_size : int -1 1 0 0 1 -1 1 -1 0 1 ...

$ aggression: num 7.02 10.67 10.22 8.95 10.51 ...

$ body_size : num 206 206 206 207 207 ...

summary(unicorns)

ID block assay_rep opp_size aggression

Length:480 Min. :-0.5 Min. :1 Min. :-1 Min. : 5.900

Class :character 1st Qu.:-0.5 1st Qu.:1 1st Qu.:-1 1st Qu.: 8.158

Mode :character Median : 0.0 Median :2 Median : 0 Median : 8.950

Mean : 0.0 Mean :2 Mean : 0 Mean : 9.002

3rd Qu.: 0.5 3rd Qu.:3 3rd Qu.: 1 3rd Qu.: 9.822

Max. : 0.5 Max. :3 Max. : 1 Max. :12.170

body_size

Min. :192.0

1st Qu.:229.7

Median :250.0

Mean :252.5

3rd Qu.:272.0

Max. :345.2

So the different columns in the data set are:

• Individual ID

• Experimental Block, denoted for now as a continuous variable with possible values of -0.5 (first block) or

+0.5 (second block)

• Individual body_size, as measured at the start of each block in kg

• The repeat number for each behavioural test, assay_rep

• Opponent size (opp_size), in standard deviations from the mean (i.e., -1,0,1)

• aggression, our behavioural trait, measured 6 times in total per individual (2 blocks of 3 tests)

maybe add something on how to look at data structure closely using tables

504



17.2. Practical

17.2.4. Do unicorns differ in aggressiveness? Your first mixed model

Fit a first mixed model with lmer that have only individual identity as a random effect and only a population mean.

Why, so simple? Because we simply want to partition variance around the mean into a component that among-

individual variance and one that is within-individual variance.

Exclamation Important

We are going to use the function lmer() from the lme4 package. The notation of the model formula

is similar as the notation for a linear model but now we also add random effects using the notation (1 |

r_effect) which indicates that we want to fit the variable r_effect as a random effect for the intercept.

Thus, in lmer notation a simploe model would be :

lmer(Y ~ x1 + x2 + (1 | r_effect), data = data)

LIGHTBULB Solution

A sensible researcher would probably take the time to do some exploratory data plots here. So let’s write a

mixed model. This one is going to have no fixed effects except the mean, and just one random effect - individual

identity.

m_1 <- lmer(aggression ~ 1 + (1 | ID), data = unicorns)

boundary (singular) fit: see help('isSingular')

There is a warning… something about “singularities”. Ignore that for a moment.

Now you need to get the model output. By that I just mean use summary(model_name).

LIGHTBULB Solution

summary(m_1)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula: aggression ~ 1 + (1 | ID)

Data: unicorns

REML criterion at convergence: 1503.7

505



Chapter 17. Introduction to linear mixed models

Scaled residuals:

Min 1Q Median 3Q Max

-2.68530 -0.73094 -0.04486 0.71048 2.74276

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 0.000 0.000

Residual 1.334 1.155

Number of obs: 480, groups: ID, 80

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 9.00181 0.05272 479.00000 170.7 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

optimizer (nloptwrap) convergence code: 0 (OK)

boundary (singular) fit: see help('isSingular')

In the summary you will find a table of fixed effects.

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 9.00181 0.05272 479.00000 170.7 <2e-16 ***

The intercept (here the mean) is about 9 and is significantly >0 - fine, but not very interesting to us.

You will also find a random effect table that contains estimates of the among individual (ID) and residual variances.

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 0.000 0.000

Residual 1.334 1.155

Number of obs: 480, groups: ID, 80

506



17.2. Practical

The among individual (ID) is estimated as zero. In fact this is what the cryptic warning was about: in most situations

the idea of a random effect explaining less than zero variance is not sensible (strangely there are exception!). So by

default the variance estimates are constrained to lie in positive parameter space. Here in trying to find the maximum

likelihood solution for among-individual variance, our model has run up against this constraint.

17.2.4.1. Testing for random effects

We can test the statistical significance of the random effect using the ranova() command in lmerTest. This

function is actually doing a likelihood ratio test (LRT) of the random effect. The premise of which is that twice the

difference in log-likelihood of the full and reduced (i.e. with the random effect dropped) is itself distributed as 𝜒2$

with DF equal to the number of parameters dropped (here 1). Actually, there is a good argument that this is too

conservative, but we can discuss that later. So let’s do the LRT for the random effect using ranova()

LIGHTBULB Solution

ranova(m_1)

npar logLik AIC LRT Df Pr(>Chisq)

3 -751.8278 1509.656 NA NA NA

(1 | ID) 2 -751.8278 1507.656 0 1 1

There is apparently no among-individual variance in aggressiveness.

So this is a fairly rubbish and underwhelming model. Let’s improve it.

17.2.5. Do unicorns differ in aggressiveness? A better mixed model

The answer we got from our first model is not wrong, it estimated the parameters we asked for and that might be

informative or not and that might be representative or not of the true biology. Anyway all models are wrong but as

models go this one is fairly rubbish. In fact we have explained no variation at all as we have no fixed effects (except

the mean) and our random effect variance is zero. We woud have seen just how pointless this model was if we’d

plotted it

plot(m_1)

507



Chapter 17. Introduction to linear mixed models

fitted(.)

re
si

d(
., 

ty
pe

 =
 "

pe
ar

so
n"

)

−2

0

2

8.6 8.8 9.0 9.2 9.4

Figure 17.2.: Fitted values vs residuals for a simple mixed model of unicorn aggression

So we can probably do better at modelling the data, which may or may not change our view on whether there is any

real variation among unicorns in aggressiveness.

For instance, we can (and should have started with) an initial plot of the phenotypic data against opponent size

indicates to have a look at our prediction.

LIGHTBULB Solution

The code below uses the excellent ggplot2 but the same figure can be done using base R code.

ggplot(unicorns, aes(x = opp_size, y = aggression)) +

geom_jitter(

alpha = 0.5,

width = 0.05

) +

scale_x_continuous(breaks = c(-1, 0, 1)) +

labs(

x = "Opponent size (SD)",

y = "Aggression"

) +

theme_classic()

508



17.2. Practical

ggplot(unicorns, aes(x = opp_size, y = aggression)) +

geom_jitter(

alpha = 0.5,

width = 0.05

) +

scale_x_continuous(breaks = c(-1, 0, 1)) +

labs(

x = "Opponent size (SD)",

y = "Aggression"

) +

theme_classic()

6

8

10

12

−1 0 1
Opponent size (SD)

A
gg

re
ss

io
n

Figure 17.3.: Unicorn aggressivity as a function of opponent size when fighting for sweets

As predicted, there is a general increase in aggression with opponent size (points are lightly jittered on the x-axis to

show the spread of data a little better)

You can see the same thing from a quick look at the population means for aggression at opponent size. Here we do it

with the kable function that makes nice tables in rmarkdown documents.

509



Chapter 17. Introduction to linear mixed models

unicorns %>%

group_by(opp_size) %>%

summarise(mean_aggr = mean(aggression)) %>%

knitr::kable(digits = 2)

opp_size mean_aggr

-1 8.00

0 8.91

1 10.09

So, there does appear to be plasticity of aggression with changing size of the model opponent. But other things may

explain variation in aggressiveness too - what about block for instance? Block effects may not be the subject of any

biologically interesting hypotheses, but accounting for any differences between blocks could remove noise.

There may also be systematic change in behaviour as an individual experiences more repeat observations (i.e. exposure

to the model). Do they get sensitised or habituated to the model intruder for example?

So let’s run a mixed model with the same random effect of individual, but with a fixed effects of opponent size (our

predictor of interest) and experimental block.

LIGHTBULB Solution

m_2 <- lmer(aggression ~ opp_size + block + (1 | ID), data = unicorns)

17.2.5.1. Diagnostic plots

Run a few diagnostic plots before we look at the answers. In diagnostic plots, we want to check the condition of

applications of the linear mixed model which are the same 4 as the linear model plus 2 extra:

1. Linearity of the relation between covariates and the response

LIGHTBULB Solution

Done with data exploration graph (i.e. just plot the data see if it is linear) - see previous graph Figure 17.3.

2. No error on measurement of covariates

510



17.2. Practical

LIGHTBULB Solution

assumed to be correct if measurement error is lower than 10% of variance in the variable - I know this sounds

pretty bad

3. Residual have a Gaussian distribution

LIGHTBULB Solution

using quantile-quantile plot or histogram of residuals

par(mfrow = c(1, 2)) # multiple graphs in a window

qqnorm(residuals(m_2)) # a q-q plot

qqline(residuals(m_2))

hist(resid(m_2)) # are the residuals roughly Gaussian?

−3 −1 1 3

−
2

−
1

0
1

2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Histogram of resid(m_2)

resid(m_2)

F
re

qu
en

cy

−2 0 1 2

0
40

80
12

0

Figure 17.4.: Checking residuals have Gaussian distribution

4. Homoscedasticty (variance of residuals is constant across covariates)

LIGHTBULB Solution

Using plot of residuals by fitted values

511



Chapter 17. Introduction to linear mixed models

plot(m_2)

fitted(.)

re
si

d(
., 

ty
pe

 =
 "

pe
ar

so
n"

)

−2

−1

0

1

2

8.0 8.5 9.0 9.5 10.0

Figure 17.5.: Residuals by fitted values for model m_2 to check homoscedasticity

5. Random effects have a Gaussian distribution

LIGHTBULB Solution

histogram of the predictions for the random effects (BLUPs)

# extracting blups

r1 <- as.data.frame(ranef(m_2, condVar = TRUE))

par(mfrow = c(1, 2))

hist(r1$condval)

qqnorm(r1$condval)

qqline(r1$condval)

512



17.2. Practical

Histogram of r1$condval

r1$condval

F
re

qu
en

cy

−0.2 0.0 0.2

0
5

10
20

−2 0 1 2

−
0.

15
0.

00
0.

10

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 17.6.: Checking random effects are gaussian

6. Residual variance is constant across all levels of a random effect

LIGHTBULB Solution

No straightforward solution to deal with that. We can just do a plot is absolutely not-informative for that

problem but I always like to look at. It is the plot of the sorted BLUPs with their associated errors.

r1 <- r1[order(r1$condval), ] # sorting the BLUPs

ggplot(r1, aes(y = grp, x = condval)) +

geom_point() +

geom_pointrange(

aes(xmin = condval - condsd * 1.96, xmax = condval + condsd * 1.96)

) +

geom_vline(aes(xintercept = 0, color = "red")) +

theme_classic() +

theme(legend.position = "none")

513



Chapter 17. Introduction to linear mixed models

ID_9ID_29ID_17ID_73ID_72ID_75ID_77ID_21ID_25ID_54ID_13ID_44ID_68ID_6ID_24ID_30ID_40ID_3ID_43ID_34ID_11ID_62ID_7ID_50ID_47ID_39ID_5ID_41ID_37ID_31ID_51ID_42ID_71ID_18ID_36ID_45ID_19ID_56ID_32ID_66ID_69ID_8ID_22ID_65ID_26ID_60ID_33ID_2ID_52ID_55ID_78ID_61ID_79ID_20ID_67ID_4ID_70ID_64ID_74ID_14ID_53ID_1ID_80ID_28ID_12ID_59ID_58ID_63ID_10ID_57ID_15ID_35ID_46ID_76ID_23ID_48ID_49ID_38ID_16ID_27

−0.25 0.00 0.25
condval

gr
p

Here is a great magic trick because 3-5 and more can be done in one step

LIGHTBULB Solution

You need to use the function check_model() from the performance package.

check_model(m_2)

514



17.2. Practical

0.0

0.1

0.2

0.3

6 8 10 12
aggression

D
en

si
ty

Observed data Model−predicted data

Model−predicted lines should resemble observed data line
Posterior Predictive Check

−2

−1

0

1

2

8.0 8.5 9.0 9.5 10.0
Fitted values

R
es

id
ua

ls

Reference line should be flat and horizontal
Linearity

0.0

0.5

1.0

1.5

8.0 8.5 9.0 9.5 10.0
Fitted values

|S
td

. r
es

id
ua

ls
|

Reference line should be flat and horizontal
Homogeneity of Variance

381

133

227

334

128

0.8

0.8

−5

0

5

0.00 0.01 0.02 0.03 0.04

Leverage (hii)

S
td

. R
es

id
ua

ls

Points should be inside the contour lines
Influential Observations

1

2

3

5

10

block opp_size NA

V
ar

ia
nc

e 
In

fla
tio

n
Fa

ct
or

 (
V

IF
, l

og
−

sc
al

ed
)

Low (< 5) NA

High collinearity (VIF) may inflate parameter uncertainty
Collinearity

−2

−1

0

1

2

−2 −1 0 1 2
Standard Normal Distribution Quantiles

S
am

pl
e 

Q
ua

nt
ile

 D
ev

ia
tio

ns

Dots should fall along the line
Normality of Residuals

−0.25

0.00

0.25

−2 −1 0 1 2
Theoretical Quantiles

R
E

 Q
ua

nt
ile

s

Dots should be plotted along the line
Normality of Random Effects (ID)

Figure 17.7.: Graphical check of model assumptions515



Chapter 17. Introduction to linear mixed models

17.2.5.2. Inferences

Now summarise this model. We will pause here for you to think about and discuss a few things: * What can

you take from the fixed effect table? * How do you interpret the intercept now that there are other effects in the

model? * What would happen if we scaled our fixed covariates differently? Why?

LIGHTBULB Solution

summary(m_2)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula: aggression ~ opp_size + block + (1 | ID)

Data: unicorns

REML criterion at convergence: 1129.9

Scaled residuals:

Min 1Q Median 3Q Max

-2.79296 -0.64761 0.00155 0.67586 2.71456

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 0.02478 0.1574

Residual 0.58166 0.7627

Number of obs: 480, groups: ID, 80

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 9.00181 0.03901 79.00000 230.778 <2e-16 ***

opp_size 1.04562 0.04263 398.00000 24.525 <2e-16 ***

block -0.02179 0.06962 398.00000 -0.313 0.754

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

516



17.2. Practical

Correlation of Fixed Effects:

(Intr) opp_sz

opp_size 0.000

block 0.000 0.000

Fire Exercise

Try tweaking the fixed part of your model:

• What happens if you add more fixed effects? Try it!

• Could focal body size also matter? If so, should you rescale before adding it to the model?

• Should you add interactions (e.g. block:opp_size)?

• Should you drop non-significant fixed effects?

Fire Exercise

Having changed the fixed part of your model, do the variance estimates change at all?

• Is among-individual variance always estimated as zero regardless of fixed effects?

• Is among-individual variance significant with some fixed effets structures but not others?

17.2.6. What is the repeatability?

As a reminder, repeatability is the proportion of variance explained by a random effect and it is estimate as the ratio of

the variance associated to a random effect by the total variance, or the sum of the residual variance and the different

variance compoentn associated with the random effects. In our first model among-individual variance was zero, so R

was zero. If we have a different model of aggression and get a non-zero value of the random effect variance, we can

obviously calculate a repeatability estimate (R). So we are all working from the same starting point, let’s all stick

with a common set of fixed effects from here on:

m_3 <- lmer(

aggression ~ opp_size + scale(body_size, center = TRUE, scale = TRUE)

+ scale(assay_rep, scale = FALSE) + block

+ (1 | ID),

data = unicorns

517



Chapter 17. Introduction to linear mixed models

)

summary(m_3)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula:

aggression ~ opp_size + scale(body_size, center = TRUE, scale = TRUE) +

scale(assay_rep, scale = FALSE) + block + (1 | ID)

Data: unicorns

REML criterion at convergence: 1136.5

Scaled residuals:

Min 1Q Median 3Q Max

-2.85473 -0.62831 0.02545 0.68998 2.74064

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 0.02538 0.1593

Residual 0.58048 0.7619

Number of obs: 480, groups: ID, 80

Fixed effects:

Estimate Std. Error df

(Intercept) 9.00181 0.03907 78.07315

opp_size 1.05141 0.04281 396.99857

scale(body_size, center = TRUE, scale = TRUE) 0.03310 0.03896 84.21144

scale(assay_rep, scale = FALSE) -0.05783 0.04281 396.99857

block -0.02166 0.06955 397.00209

t value Pr(>|t|)

(Intercept) 230.395 <2e-16 ***

opp_size 24.562 <2e-16 ***

scale(body_size, center = TRUE, scale = TRUE) 0.850 0.398

518



17.2. Practical

scale(assay_rep, scale = FALSE) -1.351 0.177

block -0.311 0.756

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) opp_sz sc=Ts=T s(_s=F

opp_size 0.000

s(_,c=TRs=T 0.000 0.000

s(_,s=FALSE 0.000 -0.100 0.000

block 0.000 0.000 0.002 0.000

So we’d probably calculate R using the individual and residual variance simply as:

0.02538 / (0.02538 + 0.58048)

[1] 0.04189087

Fire Exercise

Do you see where I took the numbers ?

We can use some more fancy coding to extract the estimates and plugged them in a formula to estimate the repeatbil-

ity

v_id <- VarCorr(m_3)$ID[1, 1]

v_r <- attr(VarCorr(m_3), "sc")^2

r_man <- v_id / (v_id + v_r)

r_man

[1] 0.04188879

Which yields an estimate of approximately R=4%. Strictly speaking we should make clear this a conditional

repeatability estimate.

Conditional on what you might ask… on the fixed effects in your model. So our best estimate of 4% refers to the

proportion of variance in aggressiveness not explained by fixed effects that is explained by individual identity. This

519



Chapter 17. Introduction to linear mixed models

isn’t much and still won’t be significant, but illustrates the point that conditional repeatabilities often have a tendency

to go up as people explain more of the residual variance by adding fixed effects. This is fine and proper, but can

mislead the unwary reader. It also means that decisions about which fixed effects to include in your model need to be

based on how you want to interpret R not just on, for instance, whether fixed effects are deemed significant.

17.2.7. A quick note on uncertainty

Using lmer in the lme4 there isn’t a really simple way to put some measure of uncertainty (SE or CI) on

derived parameters like repeatabilities. This is a bit annoying. Such things are more easily done with other mixed

model like MCMCglmm and asreml which are a bit more specialist. If you are using lmer for models you want to

publish then you could look into the rptR (Stoffel et al. 2017). This acts as a ‘wrapper’ for lmer models and

adds some nice functionality including options to boostrap confidence intervals. Regardless, of how you do it, if you

want to put a repeatability in one of your papers as a key result - it really should be accompanied by a measure of

uncertainty just like any other effect size estimate.

Here I am estimating the repeatability and using bootstrap to estimate a confidence interval and a probability

associated with the repeatability with the rptR . For more information about the use of the package and the theory

behind it suggest the excellent paper associated with the package (Stoffel et al. 2017)

r_rpt <- rptGaussian(

aggression ~ opp_size + block + (1 | ID),

grname = "ID", data = unicorns

)

Bootstrap Progress:

r_rpt

Repeatability estimation using the lmm method

Repeatability for ID

R = 0.041

SE = 0.03

520



17.2. Practical

CI = [0, 0.103]

P = 0.0966 [LRT]

NA [Permutation]

17.2.8. An easy way to mess up your mixed models

We will try some more advanced mixed models in a moment to explore plasticity in aggressiveness a bit more. First

let’s quickly look for among-individual variance in focal body size. Why not? We have the data handy, everyone says

morphological traits are very repeatable and - lets be honest - who wouldn’t like to see a small P value after striking

out with aggressiveness.

Include a random effect of ID as before and maybe a fixed effect of block, just to see if the beasties were growing a

bit between data collection periods.

lmer_size <- lmer(body_size ~ block + (1 | ID),

data = unicorns

)

Summarise and test the random effect.

LIGHTBULB Solution

summary(lmer_size)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula: body_size ~ block + (1 | ID)

Data: unicorns

REML criterion at convergence: 3460.7

Scaled residuals:

Min 1Q Median 3Q Max

-1.80452 -0.71319 0.00718 0.70280 1.81747

Random effects:

521



Chapter 17. Introduction to linear mixed models

Groups Name Variance Std.Dev.

ID (Intercept) 936.01 30.594

Residual 34.32 5.858

Number of obs: 480, groups: ID, 80

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 252.5031 3.4310 79.0000 73.595 <2e-16 ***

block -0.1188 0.5348 399.0000 -0.222 0.824

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr)

block 0.000

ranova(lmer_size)

npar logLik AIC LRT Df Pr(>Chisq)

4 -1730.369 3468.738 NA NA NA

(1 | ID) 3 -2325.551 4657.103 1190.364 1 0

Fire Exercise

What might you conclude, and why would this be foolish?

LIGHTBULB Solution

Hopefully you spotted the problem here. You have fed in a data set with 6 records per individual (with 2 sets of

3 identical values per unicorns), when you know size was only measured twice in reality. This means you’d

expect to get a (potentially very) upwardly biased estimate of R and a (potentially very) downwardly biased P

value when testing among-individual variance.

Fire Exercise

How can we do it properly?

522



17.2. Practical

LIGHTBULB Solution

We can prune the data to the two actual observations per unicorns by just selecting the first assay in each block.

unicorns2 <- unicorns[unicorns$assay_rep == 1, ]

lmer_size2 <- lmer(body_size ~ block + (1 | ID),

data = unicorns2

)

summary(lmer_size2)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula: body_size ~ block + (1 | ID)

Data: unicorns2

REML criterion at convergence: 1373.4

Scaled residuals:

Min 1Q Median 3Q Max

-1.54633 -0.56198 0.01319 0.56094 1.42095

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 912.84 30.213

Residual 57.78 7.601

Number of obs: 160, groups: ID, 80

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 252.5031 3.4310 79.0000 73.595 <2e-16 ***

block -0.1188 1.2019 79.0000 -0.099 0.922

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

523



Chapter 17. Introduction to linear mixed models

Correlation of Fixed Effects:

(Intr)

block 0.000

ranova(lmer_size2)

npar logLik AIC LRT Df Pr(>Chisq)

4 -686.6751 1381.350 NA NA NA

(1 | ID) 3 -771.9312 1549.862 170.5121 1 0

Summarise and test your random effect and you’ll see the qualitative conclusions will actually be very similar

using the pruned data set. Of course this won’t generallty but be true, so just be careful. Mixed models are

intended to help you model repeated measures data with non-independence, but they won’t get you out of

trouble if you mis-represent the true structure of observations on your dependent variable.

17.2.9. Happy mixed-modelling

Figure 17.8.: The superb unicorn

524



Chapter 18
Introduction to GLMM

18.1. Lecture

theoretical intro to glmm and introduce DHarma package to evaluate fit of glmm

Figure 18.1.: Dream pet dragon

18.2. Practical

This is an adapted version largely inspired by the tutorial in (Bolker et al. 2009). Spatial variation in nutrient

availability and herbivory is likely to cause population differentiation and maintain genetic diversity in plant popula-

tions.Here we measure the extent to which mouse-ear cress (Arabidopsis thaliana)exhibits population and genotypic

variation in their responses to these im-portant environmental factors. We are particularly interested in whether these

populations exhibit nutrient mediated compensation, where higher nutrient levels allow genotypes to better tolerate

525



Chapter 18. Introduction to GLMM

herbivory (Banta et al. 2010). We use GLMMs to estimate the effect of nutrient levels, simulated herbivory, and

their interaction on fruit production in Arabidopsis thaliana(fixed effects), and the extent to which populations vary

in their responses(random effects, or variance components)

18.2.1. Packages and functions

You need to download the “extra_funs.R” script for some functions used in the Practical

library(lme4)

library(tidyverse)

library(patchwork)

library(lattice)

library(DHARMa)

source("code/extra_funs.R")

18.2.2. The data set

In this data set, the response variable is the number of fruits (i.e. seed capsules) per plant. The number of fruits

produced by an individual plant(the experimental unit) was hypothesized to be a function of fixed effects,including

nutrient levels (low vs. high), simulated herbivory (none vs. apical meristem damage), region (Sweden, Netherlands,

Spain), and interactions among these. Fruit number was also a function of random effects including both the

population and individual genotype. Because Arabidopsis is highly selfing, seeds of a single individual served

as replicates of that individual.There were also nuisance variables, including the placement of the plant in the

greenhouse, and the method used to germinate seeds. These were estimated as fixed effects but interactions were

excluded.

• X observation number (we will use this observation number later, when we are accounting for overdispersion)

• reg a factor for region (Netherlands, Spain, Sweden).

• popu a factor with a level for each population.

• gen a factor with a level for each genotype.

• rack a nuisance factor for one of two greenhouse racks.

• nutrient a factor with levels for minimal or additional nutrients.

• amd a factor with levels for no damage or simulated herbivory (apical meristem damage; we will sometimes

refer to this as “clipping”)

526



18.2. Practical

• status a nuisance factor for germination method.

• total.fruits the response; an integer count of the number of fruits per plant.

18.2.3. Specifying fixed and random Effects

Here we need to select a realistic full model, based on the scientific questions and the data actually at hand. We first

load the data set and make sure that each variable is appropriately designated as numeric or factor (i.e.categorical

variable).

dat_tf <- read.csv("data/Banta_TotalFruits.csv")

str(dat_tf)

'data.frame': 625 obs. of 9 variables:

$ X : int 1 2 3 4 5 6 7 8 9 10 ...

$ reg : chr "NL" "NL" "NL" "NL" ...

$ popu : chr "3.NL" "3.NL" "3.NL" "3.NL" ...

$ gen : int 4 4 4 4 4 4 4 4 4 5 ...

$ rack : int 2 1 1 2 2 2 2 1 2 1 ...

$ nutrient : int 1 1 1 1 8 1 1 1 8 1 ...

$ amd : chr "clipped" "clipped" "clipped" "clipped" ...

$ status : chr "Transplant" "Petri.Plate" "Normal" "Normal" ...

$ total.fruits: int 0 0 0 0 0 0 0 3 2 0 ...

The X, gen, rack and nutrient variables are coded as integers, but we want them to be factors. � We use

mutate() dplyr , which operates within the data set, to avoid typing lots of commands like dat_tf$rack

<- factor(dat_tf$rack) � At the same time, we reorder the clipping variable so that "unclipped" is the

reference level (we could also have used relevel(amd,"unclipped")).

dat_tf <- mutate(

dat_tf,

X = factor(X),

gen = factor(gen),

rack = factor(rack),

amd = factor(amd, levels = c("unclipped", "clipped")),

527



Chapter 18. Introduction to GLMM

nutrient = factor(nutrient, label = c("Low", "High"))

)

Now we check replication for each genotype (columns) within each population (rows).

(reptab <- with(dat_tf, table(popu, gen)))

gen

popu 4 5 6 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 30 34 35 36

1.SP 0 0 0 0 0 39 26 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1.SW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 20 0 0 0 0 0

2.SW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 14 0 0 0

3.NL 31 11 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5.NL 0 0 0 35 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5.SP 0 0 0 0 0 0 0 0 43 22 12 0 0 0 0 0 0 0 0 0 0 0 0 0

6.SP 0 0 0 0 0 0 0 0 0 0 0 13 24 14 0 0 0 0 0 0 0 0 0 0

7.SW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45 47 45

8.SP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 16 35 0 0 0 0 0 0 0

Fire Exercise

Exercise: this mode of inspection is OK for this data set but might fail for much larger data sets or for more

levels of nesting. See if you can think of some other numerical or graphical methods for inspecting the structure

of data sets.

1. plot(reptab) gives a mosaic plot of the two-way table; examine this, see if you can figure out how to

interpret it, and decide whether you think it might be useful

2. try the commands colSums(reptab>0) (and the equivalent for rowSums) and figure out what they are

telling you.

3. Using this recipe, how would you compute the range of number of genotypes per treatment combination?

LIGHTBULB Solution

1. Do you find the mosaic plot you obtained ugly and super hard to read? Me too

528



18.2. Practical

plot(reptab)

reptab

popu

ge
n

1.SP 1.SW2.SW 3.NL 5.NL 5.SP 6.SP 7.SW 8.SP4561112
13

14
15

16 17181920 212223 2425 272830343536

Figure 18.2.: A truly useless plot no one can understand

2. colSums() do the sum of all the rows for each columns of a table. So colSums(reptab>0) gives you

for each genotype the number of populations (lines) where you have at least 1 observations.

colSums(reptab > 0)

4 5 6 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 30 34 35 36

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

rowSums(reptab > 0)

1.SP 1.SW 2.SW 3.NL 5.NL 5.SP 6.SP 7.SW 8.SP

3 2 2 3 2 3 3 3 3

3. You firts need to create a new table of number of observations per treatment and genotypes

reptab2 <- with(dat_tf, table(paste(amd, nutrient, sep = "_"), gen))

range(reptab2)

[1] 2 13

529



Chapter 18. Introduction to GLMM

This reveals that we have only 2–4 populations per region and 2–3 genotypes per population. However, we also

have 2–13 replicates per genotype for each treatment combination (four unique treatment combinations: 2 levels of

nutrients by 2 levels of simulated herbivory). Thus, even though this was a reasonably large experiment (625 plants),

there were a very small number of replicates with which to estimate variance components, and many more potential

interactions than our data can support. Therefore, judicious selection of model terms, based on both biology and the

data, is warranted. We note that we don’t really have enough levels per random effect, nor enough replication per

unique treatment combination. Therefore, we decide to omit the fixed effect of “region”, although we recognize that

populations in different regions are widely geographically separated.

However, as in all GLMMs where the scale parameter is treated as fixed and deviations from the fixed scale

parameter would be identifiable (i.e. Poisson and binomial (N > 1), but not binary, models) we may have to deal with

overdispersion.

18.2.4. Look at overall patterns in data

I usually like to start with a relatively simple overall plot of the data, disregarding the random factors, just to see

what’s going on. For reasons to be discussed below, we choose to look at the data on the log (or log(1 + x) scale.

Let’s plot either box-and-whisker plots (useful summaries) or dot plots (more detailed, good for seeing if we missed

anything).

Warning: `qplot()` was deprecated in ggplot2 3.4.0.

530



18.2. Practical

NL SP SW

Lo
w.u

nc
lip

pe
d

High
.u

nc
lip

pe
d

Lo
w.cl

ipp
ed

High
.cl

ipp
ed

Lo
w.u

nc
lip

pe
d

High
.u

nc
lip

pe
d

Lo
w.cl

ipp
ed

High
.cl

ipp
ed

Lo
w.u

nc
lip

pe
d

High
.u

nc
lip

pe
d

Lo
w.cl

ipp
ed

High
.cl

ipp
ed0

2

4

interaction(nutrient, amd)

lo
g(

1 
+

 to
ta

l.f
ru

its
)

Boxplot

NL SP SW

Lo
w.u

nc
lip

pe
d

High
.u

nc
lip

pe
d

Lo
w.cl

ipp
ed

High
.cl

ipp
ed

Lo
w.u

nc
lip

pe
d

High
.u

nc
lip

pe
d

Lo
w.cl

ipp
ed

High
.cl

ipp
ed

Lo
w.u

nc
lip

pe
d

High
.u

nc
lip

pe
d

Lo
w.cl

ipp
ed

High
.cl

ipp
ed0

2

4

interaction(nutrient, amd)
lo

g(
1 

+
 to

ta
l.f

ru
its

)

n

10

20

Dot plot

Figure 18.3.: Number of fruits (log + 1) as a function of treatments

Fire Exercise

Generate these plots and figure out how they work before continuing. Try conditioning/faceting on population

rather than region: for facet_wrap you might want to take out the nrow = 1 specification. If you want try reorder

the subplots by overall mean fruit set and/or colour the points according to the region they come from.

531



Chapter 18. Introduction to GLMM

LIGHTBULB Solution

p1 <- qplot(

interaction(nutrient, amd),

log(1 + total.fruits),

data = dat_tf, geom = "boxplot") +

facet_wrap(~reg, nrow = 1) +

theme(axis.text.x = element_text(angle = 45)) +

ggtitle("Boxplot")

p2 <- qplot(

interaction(nutrient, amd),

log(1 + total.fruits),

data = dat_tf) +

facet_wrap(~reg, nrow = 1) +

stat_sum() +

theme(axis.text.x = element_text(angle = 45)) +

ggtitle("Dot plot")

p1 + p2

18.2.5. Choose an error distribution

The data are non-normal in principle (i.e., count data, so our first guess would be a Poisson distribution). If we

transform total fruits with the canonical link function (log), we hope to see relatively homogeneous variances across

categories and groups.

First we define a new factor that represents every combination of genotype and treatment (nutrient × clipping)

treatment, and sort it in order of increasing mean fruit set.

dat_tf <- dat_tf %>%

mutate(

gna = reorder(interaction(gen, nutrient, amd), total.fruits, mean)

)

Now time to plot it

532



18.2. Practical

ggplot(dat_tf, aes(x = gna, y = log(1 + total.fruits))) +

geom_boxplot() +

theme_bw() +

theme(axis.text.x = element_text(angle = 90))

0

2

4

34
.L

ow
.u

nc
lip

pe
d

5.
Lo

w
.c

lip
pe

d
6.

Lo
w

.c
lip

pe
d

34
.L

ow
.c

lip
pe

d
4.

Lo
w

.c
lip

pe
d

35
.L

ow
.c

lip
pe

d
30

.L
ow

.c
lip

pe
d

6.
Lo

w
.u

nc
lip

pe
d

23
.L

ow
.c

lip
pe

d
28

.L
ow

.u
nc

lip
pe

d
36

.L
ow

.c
lip

pe
d

17
.L

ow
.u

nc
lip

pe
d

24
.L

ow
.c

lip
pe

d
18

.L
ow

.c
lip

pe
d

18
.L

ow
.u

nc
lip

pe
d

27
.L

ow
.u

nc
lip

pe
d

30
.L

ow
.u

nc
lip

pe
d

25
.L

ow
.c

lip
pe

d
36

.L
ow

.u
nc

lip
pe

d
34

.H
ig

h.
cl

ip
pe

d
34

.H
ig

h.
un

cl
ip

pe
d

21
.L

ow
.c

lip
pe

d
5.

H
ig

h.
un

cl
ip

pe
d

35
.H

ig
h.

cl
ip

pe
d

19
.L

ow
.c

lip
pe

d
35

.L
ow

.u
nc

lip
pe

d
14

.L
ow

.c
lip

pe
d

36
.H

ig
h.

un
cl

ip
pe

d
14

.L
ow

.u
nc

lip
pe

d
11

.L
ow

.c
lip

pe
d

27
.L

ow
.c

lip
pe

d
20

.L
ow

.u
nc

lip
pe

d
35

.H
ig

h.
un

cl
ip

pe
d

12
.L

ow
.c

lip
pe

d
13

.L
ow

.c
lip

pe
d

4.
Lo

w
.u

nc
lip

pe
d

28
.L

ow
.c

lip
pe

d
16

.L
ow

.u
nc

lip
pe

d
15

.L
ow

.c
lip

pe
d

36
.H

ig
h.

cl
ip

pe
d

6.
H

ig
h.

un
cl

ip
pe

d
21

.L
ow

.u
nc

lip
pe

d
16

.L
ow

.c
lip

pe
d

25
.L

ow
.u

nc
lip

pe
d

22
.L

ow
.c

lip
pe

d
12

.L
ow

.u
nc

lip
pe

d
5.

H
ig

h.
cl

ip
pe

d
24

.L
ow

.u
nc

lip
pe

d
17

.L
ow

.c
lip

pe
d

15
.L

ow
.u

nc
lip

pe
d

27
.H

ig
h.

cl
ip

pe
d

13
.L

ow
.u

nc
lip

pe
d

20
.L

ow
.c

lip
pe

d
23

.L
ow

.u
nc

lip
pe

d
30

.H
ig

h.
cl

ip
pe

d
12

.H
ig

h.
un

cl
ip

pe
d

11
.L

ow
.u

nc
lip

pe
d

16
.H

ig
h.

un
cl

ip
pe

d
16

.H
ig

h.
cl

ip
pe

d
5.

Lo
w

.u
nc

lip
pe

d
4.

H
ig

h.
un

cl
ip

pe
d

4.
H

ig
h.

cl
ip

pe
d

30
.H

ig
h.

un
cl

ip
pe

d
19

.L
ow

.u
nc

lip
pe

d
25

.H
ig

h.
un

cl
ip

pe
d

28
.H

ig
h.

cl
ip

pe
d

22
.L

ow
.u

nc
lip

pe
d

22
.H

ig
h.

cl
ip

pe
d

14
.H

ig
h.

un
cl

ip
pe

d
6.

H
ig

h.
cl

ip
pe

d
11

.H
ig

h.
un

cl
ip

pe
d

19
.H

ig
h.

un
cl

ip
pe

d
17

.H
ig

h.
un

cl
ip

pe
d

15
.H

ig
h.

cl
ip

pe
d

11
.H

ig
h.

cl
ip

pe
d

23
.H

ig
h.

cl
ip

pe
d

25
.H

ig
h.

cl
ip

pe
d

12
.H

ig
h.

cl
ip

pe
d

14
.H

ig
h.

cl
ip

pe
d

21
.H

ig
h.

cl
ip

pe
d

13
.H

ig
h.

cl
ip

pe
d

18
.H

ig
h.

cl
ip

pe
d

20
.H

ig
h.

un
cl

ip
pe

d
27

.H
ig

h.
un

cl
ip

pe
d

22
.H

ig
h.

un
cl

ip
pe

d
20

.H
ig

h.
cl

ip
pe

d
24

.H
ig

h.
un

cl
ip

pe
d

28
.H

ig
h.

un
cl

ip
pe

d
13

.H
ig

h.
un

cl
ip

pe
d

21
.H

ig
h.

un
cl

ip
pe

d
18

.H
ig

h.
un

cl
ip

pe
d

17
.H

ig
h.

cl
ip

pe
d

15
.H

ig
h.

un
cl

ip
pe

d
24

.H
ig

h.
cl

ip
pe

d
19

.H
ig

h.
cl

ip
pe

d
23

.H
ig

h.
un

cl
ip

pe
d

gna

lo
g(

1 
+

 to
ta

l.f
ru

its
)

Figure 18.4.: Boxplot of total fruits (log + 1) per genotypes and treatments

We could also calculate the variance for each genotype × treatment combination and provide a statistical summary of

these variances. This reveals substantial variation among the sample variances on the transformed data. In addition

to heterogeneous variances across groups, Figure 1 reveals many zeroes in groups, and some groups with a mean and

variance of zero, further suggesting we need a non-normal error distribution, and perhaps something other than a

Poisson distribution.

We could calculate λ(mean) for each genotype × treatment combination and provide a statistical summary of each

group’s λ.

grp_means <- with(dat_tf, tapply(total.fruits, list(gna), mean))

summary(grp_means)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 11.35 23.16 31.86 49.74 122.40

533



Chapter 18. Introduction to GLMM

A core property of the Poisson distribution is that the variance is equal to the mean. A simple diagnostic is a plot of

the group variances against the group means:

• Poisson-distributed data will result in a linear pattern with slope = 1

• as long as the variance is generally greater than the mean, we call the data overdispersed. Overdispersion

comes in various forms:

– a linear mean-variance relationship with Var = φµ (a line through the origin) with φ > 1 is called a

quasi-Poisson pattern (this term describes the mean-variance relationship, not any particular proability

distribution); we can implement it statistically via quasilikelihood (Venables and Ripley, 2002) or by

using a particular parameterization of the negative binomial distribution (“NB1” inthe terminology of

Hardin and Hilbe (2007))

– a semi-quadratic pattern, Var = µ(1 + αµ) or µ(1 + µ/k), is characteristic of overdispersed data that is

driven by underlying heterogeneity among samples, either the negative binomial (gamma-Poisson) or the

lognormal-Poisson (Elston et al. 2001)

We’ve already calculated the group (genotype × treatment) means, we calculate the variances in the same way.

grp_vars <- with(

dat_tf,

tapply(

total.fruits,

list(gna), var

)

)

We can get approximate estimates of the quasi-Poisson (linear) and negative binomial (linear/quadratic) pattern using

lm.

lm1 <- lm(grp_vars ~ grp_means - 1) ## `quasi-Poisson' fit

phi_fit <- coef(lm1)

lm2 <- lm((grp_vars - grp_means) ~ I(grp_means^2) - 1)

k_fit <- 1 / coef(lm2)

Now we can plot them.

534



18.2. Practical

plot(grp_vars ~ grp_means, xlab = "group means", ylab = "group variances")

abline(c(0, 1), lty = 2)

text(105, 500, "Poisson")

curve(phi_fit * x, col = 2, add = TRUE)

## bquote() is used to substitute numeric values

## in equations with symbols

text(110, 3900,

bquote(paste("QP: ", sigma^2 == .(round(phi_fit, 1)) * mu)),

col = 2

)

curve(x * (1 + x / k_fit), col = 4, add = TRUE)

text(104, 7200, paste("NB: k=", round(k_fit, 1), sep = ""), col = 4)

l_fit <- loess(grp_vars ~ grp_means)

mvec <- 0:120

lines(mvec, predict(l_fit, mvec), col = 5)

text(100, 2500, "loess", col = 5)

0 20 40 60 80 100 120

0
20

00
60

00

group means

gr
ou

p 
va

ria
nc

es

Poisson

QP: σ2 = 41µ

NB: k=2.1

loess

Figure 18.5.: Graphical evaluation of distribution to use

Same with ggplot

535



Chapter 18. Introduction to GLMM

ggplot(

data.frame(grp_means, grp_vars),

aes(x = grp_means, y = grp_vars)) +

geom_point() +

geom_smooth(

aes(colour = "Loess"), se = FALSE) +

geom_smooth(

method = "lm", formula = y ~ x - 1, se = FALSE,

aes(colour = "Q_Pois")) +

stat_function(

fun = function(x) x * (1 + x / k_fit),

aes(colour = "Neg_bin")

) +

geom_abline(

aes(intercept = 0, slope = 1, colour = "Poisson")) +

scale_colour_manual(

name = "legend",

values = c("blue", "purple", "black", "red")) +

scale_fill_manual(

name = "legend",

values = c("blue", "purple", "black", "red")) +

guides(fill = FALSE)

Warning: The `<scale>` argument of `guides()` cannot be `FALSE`. Use "none" instead as

of ggplot2 3.3.4.

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

536



18.2. Practical

0

2000

4000

6000

8000

0 25 50 75 100 125
grp_means

gr
p_

va
rs

legend

Loess

Neg_bin

Poisson

Q_Pois

Figure 18.6.: Graphical evaluation of distribution to use with ggplot

These fits are not rigorous statistical tests — they violate a variety of assumptions of linear regression (e.g. constant

variance, independence), but they are good enough to give us an initial guess about what distributions we should

use.

Exercise

• compare a simple quadratic fit to the data (i.e., without the linear part) with the negative binomial and

quasipoisson fits

537



Chapter 18. Introduction to GLMM

LIGHTBULB Solution

lm3 <- lm(grp_vars ~ I(grp_means)^2 - 1) ## quadratic fit

quad_fit <- coef(lm3)

ggplot(

data.frame(grp_means, grp_vars),

aes(x = grp_means, y = grp_vars)) +

geom_point() +

geom_smooth(

method = "lm", formula = y ~ x - 1, se = FALSE,

aes(colour = "Q_Pois")) +

stat_function(

fun = function(x) x * (1 + x / k_fit),

aes(colour = "Neg_bin")

) +

geom_smooth(

method = "lm", formula = y ~ I(x^2) - 1, se = FALSE,

aes(colour = "Quad")) +

scale_colour_manual(

name = "legend",

values = c("blue", "purple", "black")) +

scale_fill_manual(

name = "legend",

values = c("blue", "purple", "black")) +

guides(fill = FALSE)

538



18.2. Practical

0

2000

4000

6000

8000

0 25 50 75 100 125
grp_means

gr
p_

va
rs

legend

Neg_bin

Q_Pois

Quad

Figure 18.7.: Graphical evaluation of distribution to use including quadratic effect

18.2.5.1. Plotting the response vs treatments

Just to avoid surprises

ggplot(dat_tf, aes(x = amd, y = log(total.fruits + 1), colour = nutrient)) +

geom_point() +

## need to use as.numeric(amd) to get lines

stat_summary(aes(x = as.numeric(amd)), fun = mean, geom = "line") +

theme_bw() +

theme(panel.spacing = unit(0, "lines")) +

facet_wrap(~popu)

539



Chapter 18. Introduction to GLMM

6.SP 7.SW 8.SP

3.NL 5.NL 5.SP

1.SP 1.SW 2.SW

unclipped clipped unclipped clipped unclipped clipped

0

2

4

0

2

4

0

2

4

amd

lo
g(

to
ta

l.f
ru

its
 +

 1
)

nutrient

Low

High

Figure 18.8.: Fruit production by treatments by population

ggplot(dat_tf, aes(x = amd, y = log(total.fruits + 1), colour = gen)) +

geom_point() +

stat_summary(aes(x = as.numeric(amd)), fun = mean, geom = "line") +

theme_bw() +

## label_both adds variable name ('nutrient') to facet labels

facet_grid(. ~ nutrient, labeller = label_both)

540



18.2. Practical

nutrient: Low nutrient: High

unclipped clipped unclipped clipped

0

2

4

amd

lo
g(

to
ta

l.f
ru

its
 +

 1
)

gen

4

5

6

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

28

30

34

35

36

Figure 18.9.: Fruit production by genotype by treatments

18.2.6. Fitting group-wise GLM

Another general starting approach is to fit GLMs to each group of data separately, equivalent to treating the grouping

variables as fixed effects. This should result in reasonable variation among treatment effects. We first fit the models,

and then examine the coefficients.

glm_lis <- lmList(

total.fruits ~ nutrient * amd | gen,

data = dat_tf,

family = "poisson")

plot.lmList(glm_lis)

Loading required package: reshape2

Attaching package: 'reshape2'

The following object is masked from 'package:tidyr':

smiths

541



Chapter 18. Introduction to GLMM

Using grp as id variables

value

535191222113616254241314152021233061727182834

−20 −10 0 10 20

(Intercept) nutrientHigh
535191222113616254241314152021233061727182834

amdclipped

−20 −10 0 10 20

nutrientHigh:amdclipped

Figure 18.10.: Model coefficients for GLM fits on each genotype

Three genotypes (5, 6, 34) have extreme coefficients (Fig. 5). A mixed model assumes that the underlying random

effects are normally distributed, although we shouldn’t take these outliers too seriously at this point — we are not

actually plotting the random effects, or even estimates of random effects (which are not themselves guaranteed to be

normally distributed), but rather separate estimates for each group. Create a plotting function for Q-Q plots of these

coefficients to visualize the departure from normality.

qqmath.lmList(glm_lis)

No id variables; using all as measure variables

542



18.2. Practical

qnorm

va
lu

e

−
15

−
5

0

−2 −1 0 1 2

(Intercept)

0
5

10
15

nutrientHigh−
20

0
10

amdclipped

−2 −1 0 1 2

−
10

0
10

20

nutrientHigh:amdclipped

Figure 18.11.: Q-Q plots of model coefficients for GLM fits on each genotype

We see that these extreme coefficients fall far outside a normal error distribution. We shouldn’t take these outliers

too seriously at this point — we are not actually plotting the random effects, or even estimates of random effects, but

rather separate estimates for each group. Especially if these groups have relatively small sample sizes, the estimates

may eventually be “shrunk” closer to the mean when we do the mixed model. We should nonetheless take care to

see if the coefficients for these genotypes from the GLMM are still outliers, and take the same precautions as we

usually do for outliers. For example, we can look back at the original data to see if there is something weird about

the way those genotypes were collected, or try re-running the analysis without those genotypes to see if the results

are robust.

18.2.7. Fitting and evaluating GLMMs

Now we (try to) build and fit a full model, using glmer in the emoji::emoji("pacakage") lme4. This model has

random effects for all genotype and population × treatment random effects, and for the nuisance variables for the rack

and germination method (status). (Given the mean-variance relationship we saw it’s pretty clear that we are going to

have to proceed eventually to a model with overdispersion, but we fit the Poisson model first for illustration.)

mp1 <- glmer(total.fruits ~ nutrient * amd +

rack + status +

(amd * nutrient | popu) +

543



Chapter 18. Introduction to GLMM

(amd * nutrient | gen),

data = dat_tf, family = "poisson"

)

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :

Model failed to converge with max|grad| = 0.0135718 (tol = 0.002, component 1)

overdisp_fun(mp1)

chisq ratio p

13909.47073 23.25998 0.00000

The overdisp_fun() is described here https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#testing-for-

overdispersioncomputing-overdispersion-factor) on the absolutely fantastic FAQ about GLMMs by Ben Bolker

https://bbolker.github.io/mixedmodels-misc/glmmFAQ.html

We can ignore the model convergence for the moment. This shows that the data are (extremely) over-dispersed, given

the model.

We can also use the excellent DHARMa (Hartig 2022) to evaluate fit of glm and glmm. So instead of using the

function overdisp_fun(), we can simply use the function testDispersion().

testDispersion(mp1)

DHARMa nonparametric dispersion test via sd of
residuals fitted vs. simulated

Simulated values, red line = fitted model. p−value (two.sided) = 0.384

F
re

qu
en

cy

0 2 4 6 8 10

0
20

40
60

80

544

https://github.com/r-lib/here


18.2. Practical

DHARMa nonparametric dispersion test via sd of residuals fitted vs.

simulated

data: simulationOutput

dispersion = 1.3003, p-value = 0.384

alternative hypothesis: two.sided

As you can see, DHARMa suggests that there is no overdispersion based on the distribution of residuals from

simulated data. We are going to consider that we have overdispersion and adjust the model accordingly.

Now we add the observation-level random effect to the model to account for overdispersion (Elston et al. 2001).

mp2 <- update(mp1, . ~ . + (1 | X))

Warning in (function (fn, par, lower = rep.int(-Inf, n), upper = rep.int(Inf, :

failure to converge in 10000 evaluations

Warning in optwrap(optimizer, devfun, start, rho$lower, control = control, :

convergence code 4 from Nelder_Mead: failure to converge in 10000 evaluations

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :

Model failed to converge with max|grad| = 0.173075 (tol = 0.002, component 1)

The model takes much longer to fit (and gives warnings). We look just at the variance components. In particular, if

we look at the correlation matrix among the genotype random effects, we see a perfect correlation.

attr(VarCorr(mp2)$gen, "correlation")

(Intercept) amdclipped nutrientHigh

(Intercept) 1.0000000 -0.9979733 -0.9861333

amdclipped -0.9979733 1.0000000 0.9883406

nutrientHigh -0.9861333 0.9883406 1.0000000

amdclipped:nutrientHigh 0.8199582 -0.8326069 -0.9033829

amdclipped:nutrientHigh

545



Chapter 18. Introduction to GLMM

(Intercept) 0.8199582

amdclipped -0.8326069

nutrientHigh -0.9033829

amdclipped:nutrientHigh 1.0000000

We’ll try getting rid of the correlations between clipping (amd) and nutrients, using amd+nutrient instead of

amd*nutrient in the random effects specification (here it seems easier to re-do the model rather than using update

to add and subtract terms).

mp3 <- glmer(total.fruits ~ nutrient * amd +

rack + status +

(amd + nutrient | popu) +

(amd + nutrient | gen) + (1 | X),

data = dat_tf, family = "poisson"

)

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :

Model failed to converge with max|grad| = 0.225224 (tol = 0.002, component 1)

attr(VarCorr(mp3)$gen, "correlation")

(Intercept) amdclipped nutrientHigh

(Intercept) 1.0000000 -0.9118731 -0.9966458

amdclipped -0.9118731 1.0000000 0.9123919

nutrientHigh -0.9966458 0.9123919 1.0000000

attr(VarCorr(mp3)$popu, "correlation")

(Intercept) amdclipped nutrientHigh

(Intercept) 1.0000000 0.9947027 0.9969663

amdclipped 0.9947027 1.0000000 0.9909861

nutrientHigh 0.9969663 0.9909861 1.0000000

546



18.2. Practical

Unfortunately, we still have perfect correlations among the random effects terms. For some models (e.g. random-

slope models), it is possible to fit random effects models in such a way that the correlation between the different

parameters (intercept and slope in the case of random-slope models) is constrained to be zero, by fitting a model

like (1|f)+(0+x|f); unfortunately, because of the way lme4 is set up, this is considerably more difficult with

categorical predictors (factors).

We have to reduce the model further in some way in order not to overfit (i.e., in order to not have perfect ±1 correlations

among random effects). It looks like we can’t allow both nutrients and clipping in the random effect model at either

the population or the genotype level. However, it’s hard to know whether we should proceed with amd or nutrient,

both, or neither in the model.

A convenient way to proceed if we are going to try fitting several different combinations of random effects is to fit

the model with all the fixed effects but only observation-level random effects, and then to use update to add various

components to it.

mp_obs <- glmer(total.fruits ~ nutrient * amd +

rack + status +

(1 | X),

data = dat_tf, family = "poisson"

)

Now, for example, update(mp_obs,.~.+(1|gen)+(amd|popu)) fits the model with intercept random effects at

the genotype level and variation in clipping effects across populations.

Fire Exercise

Exercise using update, fit the models with

1. clipping variation at both genotype and population levels;

2. nutrient variation at both genotype and populations; convince yourself that trying to fit variation in either

clipping or nutrients leads to overfitting (perfect correlations).

3. Fit the model with only intercept variation at the population and genotype levels, saving it as mp4; show

that there is non-zero variance estimated

LIGHTBULB Solution

1.

547



Chapter 18. Introduction to GLMM

mpcli <- update(mp_obs, . ~ . + (amd | gen) + (amd | popu))

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :

Model failed to converge with max|grad| = 0.0833404 (tol = 0.002, component 1)

VarCorr(mpcli)

Groups Name Std.Dev. Corr

X (Intercept) 1.431394

gen (Intercept) 0.293549

amdclipped 0.032813 -0.944

popu (Intercept) 0.750993

amdclipped 0.125908 0.998

2.

mpnut <- update(mp_obs, . ~ . + (nutrient | gen) + (nutrient | popu))

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :

Model failed to converge with max|grad| = 0.0161168 (tol = 0.002, component 1)

VarCorr(mpnut)

Groups Name Std.Dev. Corr

X (Intercept) 1.41918

gen (Intercept) 0.47719

nutrientHigh 0.32402 -1.000

popu (Intercept) 0.74716

nutrientHigh 0.12001 1.000

3.

mp4 <- update(mp_obs, . ~ . + (1 | gen) + (1 | popu))

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :

Model failed to converge with max|grad| = 0.0212496 (tol = 0.002, component 1)

548



18.2. Practical

VarCorr(mp4)

Groups Name Std.Dev.

X (Intercept) 1.43199

gen (Intercept) 0.28669

popu (Intercept) 0.80575

In other words, while it’s biologically plausible that there is some variation in the nutrient or clipping effect at the

genotype or population levels, with this modeling approach we really don’t have enough data to speak confidently

about these effects. Let’s check that mp4 no longer incorporates overdispersion (the observationlevel random effect

should have taken care of it):

overdisp_fun(mp4)

chisq ratio p

177.3714518 0.2884089 1.0000000

Using the DHARMa , we will also check the model. To do so we first need to simulate some data and get the scaled

residuals following the DHARMa notation. Then we can check the distributional properties of the scaled residuals

and see if they follow the classic assumption using the different functions provided.

scaled_res <- simulateResiduals(mp4)

plot(scaled_res)

549



Chapter 18. Introduction to GLMM

0.0 0.4 0.8

0.
0

0.
4

0.
8

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.00161
Deviation  significant

Outlier test: p= 0.17102
Deviation  n.s.

Dispersion test: p= 0
Deviation  significant

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.4 0.8

0.
00

0.
50

1.
00

Residual vs. predicted
Quantile deviations detected (red curves)

Combined adjusted quantile test n.s.

DHARMa residual

testZeroInflation(mp4, plot = TRUE)

DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0

F
re

qu
en

cy

20 40 60 80 100 120

0
5

10
15

DHARMa zero-inflation test via comparison to expected zeros with

simulation under H0 = fitted model

data: simulationOutput

550



18.2. Practical

ratioObsSim = 1.9823, p-value < 2.2e-16

alternative hypothesis: two.sided

# note about overdispersion

sum(dat_tf$total.fruits == 0)

[1] 126

a <- predict(mp4, type = "response")

b <- rep(0, 500)

for (j in 1:500) {

b[j] <- sum(sapply(seq(nrow(dat_tf)), function(i) rpois(1, a[i])) == 0)

}

hist(b)

Histogram of b

b

F
re

qu
en

cy

60 65 70 75 80 85 90 95

0
50

10
0

15
0

18.2.8. Inference

18.2.8.1. Random effects

glmer (lmer) does not return information about the standard errors or confidence intervals of the variance compo-

nents.

551



Chapter 18. Introduction to GLMM

VarCorr(mp4)

Groups Name Std.Dev.

X (Intercept) 1.43199

gen (Intercept) 0.28669

popu (Intercept) 0.80575

18.2.8.1.1. Testing for random Effects If we want to test the significance of the random effects we can fit

reduced models and run likelihood ratio tests via anova, keeping in mind that in this case (testing a null hypothesis of

zero variance, where the parameter is on the boundary of its feasible region) the reported p value is approximately

twice what it should be.

mp4v1 <- update(mp_obs, . ~ . + (1 | popu)) ## popu only (drop gen)

mp4v2 <- update(mp_obs, . ~ . + (1 | gen)) ## gen only (drop popu)

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :

unable to evaluate scaled gradient

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :

Model failed to converge: degenerate Hessian with 2 negative eigenvalues

anova(mp4, mp4v1)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

mp4v1 9 5017.437 5057.377 -2499.718 4999.437 NA NA NA

mp4 10 5015.374 5059.751 -2497.687 4995.374 4.063087 1 0.0438303

anova(mp4, mp4v2)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

mp4v2 9 5031.585 5071.525 -2506.793 5013.585 NA NA NA

mp4 10 5015.374 5059.751 -2497.687 4995.374 18.21153 1 1.98e-05

552



18.2. Practical

For various forms of linear mixed models, the RLRsim package can do efficient simulation-based hypothesis testing

of variance components — un- fortunately, that doesn’t include GLMMs. If we are sufficiently patient we can do

hypothesis testing via brute-force parametric bootstrapping where we repeatedly simulate data from the reduced

(null) model, fit both the re- duced and full models to the simulated data, and compute the distribution of the deviance

(change in -2 log likelihood). The code below took about half an hour on a reasonably modern desktop computer.

simdev <- function() {

newdat <- simulate(mp4v1)

reduced <- lme4::refit(mp4v1, newdat)

full <- lme4::refit(mp4, newdat)

2 * (c(logLik(full) - logLik(reduced)))

}

set.seed(101)

nulldist0 <- replicate(2, simdev())

## zero spurious (small) negative values

nulldist[nulldist < 0 & abs(nulldist) < 1e-5] <- 0

obsdev <- 2 * c(logLik(mp4) - logLik(mp4v1))

mean(c(nulldist, obsdev) >= obsdev)

[1] 0.01492537

The true p-value is actually closer to 0.05 than 0.02. In other words, here the deviations from the original statistical

model from that for which the original “p value is inflated by 2” rule of thumb was derived — fitting a GLMM

instead of a LMM, and using a moderate-sized rather than an arbitrarily large (asymptotic) data set — have made the

likelihood ratio test liberal (increased type I error) rather than conservative (decreased type I error).

We can also inspect the random effects estimates themselves (in proper statistical jargon, these might be considered

“predictions” rather than “estimates” (Robinson, 1991)). We use the built-in dotplot method for the random effects

extracted from glmer fits (i.e. ranef(model,condVar=TRUE)), which returns a list of plots, one for each random effect

level in the model.

553



Chapter 18. Introduction to GLMM

r1 <- as.data.frame(ranef(mp4, condVar = TRUE, whichel = c("gen", "popu")))

p1 <- ggplot(subset(r1, grpvar == "gen"), aes(y = grp, x = condval)) +

geom_point() +

geom_pointrange(

aes(xmin = condval - condsd * 1.96, xmax = condval + condsd * 1.96)

) +

geom_vline(aes(xintercept = 0, color = "red")) +

theme_classic() +

theme(legend.position = "none")

p2 <- ggplot(subset(r1, grpvar == "popu"), aes(y = grp, x = condval)) +

geom_point() +

geom_pointrange(

aes(xmin = condval - condsd * 1.96, xmax = condval + condsd * 1.96)

) +

geom_vline(aes(xintercept = 0, color = "red")) +

theme_classic() +

theme(legend.position = "none")

p1 + p2

34
30
27
16
20
4

24
13
5

21
6

22
11
14
12
17
18
15
35
23
25
19
28
36

−1.0 −0.5 0.0 0.5
condval

gr
p

7.SW

3.NL

1.SW

2.SW

5.NL

5.SP

6.SP

1.SP

8.SP

−2 −1 0 1
condval

gr
p

Figure 18.12.: Distribution of BLUPs for genotypes and populations

554



18.2. Practical

As expected from the similarity of the variance estimates, the population-level estimates (the only shared component)

do not differ much between the two models. There is a hint of regional differentiation — the Spanish populations

have higher fruit sets than the Swedish and Dutch populations. Genotype 34 again looks a little bit unusual.

18.2.8.2. Fixed effects

Now we want to do inference on the fixed effects. We use the drop1 func- tion to assess both the AIC difference and

the likelihood ratio test between models. (In glmm_funs.R we define a convenience function dfun to convert the AIC

tables returned by drop1 (which we will create momentarily) into �AIC tables.) Although the likelihood ratio test

(and the AIC) are asymptotic tests, comparing fits between full and reduced models is still more accurate than the

Wald (curvature-based) tests shown in the summary tables for glmer fits.

(dd_aic <- dfun(drop1(mp4)))

npar dAIC

NA 0.000000

rack 1 55.081760

status 2 1.611490

nutrient:amd 1 1.443013

(dd_lrt <- drop1(mp4, test = "Chisq"))

npar AIC LRT Pr(Chi)

NA 5015.374 NA NA

rack 1 5070.456 57.081760 0.0000000

status 2 5016.985 5.611491 0.0604617

nutrient:amd 1 5016.817 3.443013 0.0635198

On the basis of these comparisons, there appears to be a very strong effect of rack and weak effects of status and of

the interaction term. Dropping the nutrient:amd interaction gives a (slightly) increased AIC (�AIC = 1.4), so the full

model has the best expected predictive capability (by a small margin). On the other hand, the p-value is slightly

above 0.05 (p = 0.06). At this point we remove the non-significant interaction term so we can test the main effects.

555



Chapter 18. Introduction to GLMM

(We don’t worry about removing status because it measures an aspect of experimental design that we want to leave in

the model whether it is significant or not.) Once we have fitted the reduced model, we can run the LRT via anova.

mp5 <- update(mp4, . ~ . - amd:nutrient)

anova(mp5, mp4)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

mp5 9 5016.817 5056.757 -2499.408 4998.817 NA NA NA

mp4 10 5015.374 5059.751 -2497.687 4995.374 3.443013 1 0.0635198

Exercise Test now the reduced model.

In the reduced model, we find that both nutrients and clipping have strong effects, whether measured by AIC or LRT.

If we wanted to be still more careful about our interpretation, we would try to relax the asymptotic assumption. In

classical linear models, we would do this by doing F tests with the appropriate denominator degrees of freedom. In

“modern” mixed model approaches, we might try to use denominator-degree-of-freedom approximations such as the

Kenward-Roger (despite the controversy over these approximations, they are actually available in lmerTest, but

they do not apply to GLMMs. We can use a parametric bootstrap comparison between nested models to test fixed

effects, as we did above for random effects, with the caveat that is computationally slow.

In addition, we can check the normality of the random effects and find they are reasonable (Fig. 10).

r5 <- as.data.frame(ranef(mp5))

ggplot(data = r5, aes(sample = condval)) +

geom_qq() + geom_qq_line() +

facet_wrap(~ grpvar) +

theme_classic()

556



18.2. Practical

gen popu X

−2 0 2 −2 0 2 −2 0 2

−2.5

0.0

2.5

x

y

Figure 18.13.: Q-Q plot of BLUPs from model mp5

Checking everything with DHARMa also

scaled_res <- simulateResiduals(mp5)

plot(scaled_res)

0.0 0.4 0.8

0.
0

0.
4

0.
8

QQ plot residuals

Expected

O
bs

er
ve

d

KS test: p= 0.0063
Deviation  significant

Outlier test: p= 0.17102
Deviation  n.s.

Dispersion test: p= 0
Deviation  significant

Model predictions (rank transformed)

D
H

A
R

M
a 

re
si

du
al

0.0 0.4 0.8

0.
00

0.
50

1.
00

Residual vs. predicted
Quantile deviations detected (red curves)

Combined adjusted quantile test n.s.

DHARMa residual

557



Chapter 18. Introduction to GLMM

testZeroInflation(mp5, plot = TRUE)

DHARMa zero−inflation test via comparison to
expected zeros with simulation under H0 = fitted

model

Simulated values, red line = fitted model. p−value (two.sided) = 0

F
re

qu
en

cy

40 60 80 100 120

0
5

10
15

DHARMa zero-inflation test via comparison to expected zeros with

simulation under H0 = fitted model

data: simulationOutput

ratioObsSim = 1.9918, p-value < 2.2e-16

alternative hypothesis: two.sided

It is better than before but not perfect. I think this is completely OK and that it will extremely rarely be perfect.

You need to learn what is acceptable (by that I mean you find acceptable) and be happy to justify and discuss your

decisions.

18.2.9. Conclusions

Our final model includes fixed effects of nutrients and clipping, as well as the nuisance variables rack and status;

observation-level random effects to ac- count for overdispersion; and variation in overall fruit set at the population

and genotype levels. However, we don’t (apparently) have quite enough in- formation to estimate the variation in

clipping and nutrient effects, or their interaction, at the genotype or population levels. There is a strong overall

558



18.2. Practical

positive effect of nutrients and a slightly weaker negative effect of clipping. The interaction between clipping and

nutrients is only weakly supported (i.e. the p-value is not very small), but it is positive and about the same magnitude

as the clipping effect, which is consistent with the statement that “nutrients cancel out the effect of herbivory”.

Fire Exercise

Exercise

• Re-do the analysis with region as a fixed effect.

• Re-do the analysis with a one-way layout as suggested above

18.2.10. Happy generalized mixed-modelling

Figure 18.14.: A GLMM character

559



Chapter 19
Random regression and character state approaches

19.1. Lecture

And here there would be dragons

Figure 19.1.: Dream pet dragon

19.2. Practical

In this practical, we will revisit our analysis on unicorn aggressivity. Honestly, we can use any other data with

repeated measures for this exercise but I just  unicorns.

560



19.2. Practical

19.2.1. R packages needed

First we load required libraries

library(lme4)

library(tidyverse)

library(broom.mixed)

library(asreml)

library(MCMCglmm)

library(bayesplot)

library(patchwork)

19.2.2. Refresher on unicorn aggression

In the previous, practical on linear mixed models, we simply explored the differences among individuals in their

mean aggression (Intercept), but we assumed that the response to the change in aggression with the opponent size

(i.e. plasticity) was the same for all individuals. However, this plastic responses can also vary amon individuals.

This is called IxE, or individual by environment interaction. To test if individuals differ in their plasticity we can

use a random regression, whcih is simply a mixed-model where we fit both a random intercept and a random slope

effect.

Following analysis from the previous pratical, our model of interest using scaled covariate was:

aggression ~ opp_size + body_size_sc + assay_rep_sc + block

+ (1 | ID)

We should start by loading the data and refitting the model using lmer().

unicorns <- read.csv("data/unicorns_aggression.csv")

unicorns <- unicorns %>%

mutate(

body_size_sc = scale(body_size),

assay_rep_sc = scale(assay_rep, scale = FALSE)

)

561



Chapter 19. Random regression and character state approaches

m_mer <- lmer(

aggression ~ opp_size + body_size_sc + assay_rep_sc + block

+ (1 | ID),

data = unicorns

)

summary(m_mer)

Linear mixed model fit by REML ['lmerMod']

Formula: aggression ~ opp_size + body_size_sc + assay_rep_sc + block +

(1 | ID)

Data: unicorns

REML criterion at convergence: 1136.5

Scaled residuals:

Min 1Q Median 3Q Max

-2.85473 -0.62831 0.02545 0.68998 2.74064

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 0.02538 0.1593

Residual 0.58048 0.7619

Number of obs: 480, groups: ID, 80

Fixed effects:

Estimate Std. Error t value

(Intercept) 9.00181 0.03907 230.395

opp_size 1.05141 0.04281 24.562

body_size_sc 0.03310 0.03896 0.850

assay_rep_sc -0.05783 0.04281 -1.351

block -0.02166 0.06955 -0.311

Correlation of Fixed Effects:

562



19.2. Practical

(Intr) opp_sz bdy_s_ assy__

opp_size 0.000

body_siz_sc 0.000 0.000

assay_rp_sc 0.000 -0.100 0.000

block 0.000 0.000 0.002 0.000

We can now plot the predictions for each of our observations and plot for the observed and the fitted data for each

individuals. Todo so we will use the augment() function from the broom.mixed.

Below, we plot the raw data for each individual in one panel, with the fitted slopes in a second panel. Because we

have 2 blocks of data, and block is fitted as a fixed effect, for ease of presentation we need to either select only 1

block for representation, take teh avaerage over the block effect or do a more complex graph with the two blocks.

Here I have selected only one of the blocks for this plot

pred_m_mer <- augment(m_mer) %>%

select(ID, block, opp_size, .fitted, aggression) %>%

filter(block == -0.5) %>%

gather(

type, aggression,

`.fitted`:aggression

)

ggplot(pred_m_mer, aes(x = opp_size, y = aggression, group = ID)) +

geom_line(alpha = 0.3) +

theme_classic() +

facet_grid(. ~ type)

563



Chapter 19. Random regression and character state approaches

.fitted aggression

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

8

10

12

opp_size

ag
gr

es
si

on

Figure 19.2.: Predicted (from m_mer) and observed value of aggression as a function of opponent size in unicorns

This illustrates the importance of using model predictions to see whether the model actually fits the individual-level

data well or not — while the diagnostic plots looked fine, and the model captures mean plasticity, here we can see

that the model really doesn’t fit the actual data very well at all.

19.2.3. Random regression

19.2.3.1. with lme4

rr_mer <- lmer(

aggression ~ opp_size + body_size_sc + assay_rep_sc + block

+ (1 + opp_size | ID),

data = unicorns

)

pred_rr_mer <- augment(rr_mer) %>%

select(ID, block, opp_size, .fitted, aggression) %>%

filter(block == -0.5) %>%

gather(type,aggression, `.fitted`:aggression)

564



19.2. Practical

ggplot(pred_rr_mer, aes(x = opp_size, y = aggression, group = ID)) +

geom_line(alpha = 0.3) +

theme_classic() +

facet_grid(. ~ type)

.fitted aggression

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

8

10

12

opp_size

ag
gr

es
si

on

We can test the improvement of the model fit using the overloaded anova function in R to perform a likelihood ratio

test (LRT):

anova(rr_mer, m_mer, refit = FALSE)

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

m_mer 7 1150.477 1179.693 -568.2383 1136.477 NA NA NA

rr_mer 9 1092.356 1129.920 -537.1780 1074.356 62.1206 2 0

We can see here that the LRT uses a chi-square test with 2 degrees of freedom, and indicates that the random

slopes model shows a statistically significant improvement in model fit. The 2df are because there are two additional

(co)variance terms estimated in the random regression model: a variance term for individual slopes, and the covariance

(or correlation) between the slopes and intercepts. Let’s look at those values, and also the fixed effects parameters,

via the model summary:

565



Chapter 19. Random regression and character state approaches

summary(rr_mer)

Linear mixed model fit by REML ['lmerMod']

Formula: aggression ~ opp_size + body_size_sc + assay_rep_sc + block +

(1 + opp_size | ID)

Data: unicorns

REML criterion at convergence: 1074.4

Scaled residuals:

Min 1Q Median 3Q Max

-3.04932 -0.59780 -0.02002 0.59574 2.68010

Random effects:

Groups Name Variance Std.Dev. Corr

ID (Intercept) 0.05043 0.2246

opp_size 0.19167 0.4378 0.96

Residual 0.42816 0.6543

Number of obs: 480, groups: ID, 80

Fixed effects:

Estimate Std. Error t value

(Intercept) 9.00181 0.03902 230.707

opp_size 1.05033 0.06123 17.153

body_size_sc 0.02725 0.03377 0.807

assay_rep_sc -0.04702 0.03945 -1.192

block -0.02169 0.05973 -0.363

Correlation of Fixed Effects:

(Intr) opp_sz bdy_s_ assy__

opp_size 0.495

body_siz_sc 0.000 0.000

assay_rp_sc 0.000 -0.064 -0.006

566



19.2. Practical

block 0.000 0.000 0.002 0.000

19.2.3.2. with asreml

unicorns <- unicorns %>%

mutate( ID = as.factor(ID))

rr_asr <- asreml(

aggression ~ opp_size + body_size_sc + assay_rep_sc + block,

random = ~str(~ ID + ID:opp_size, ~us(2):id(ID)),

residual = ~ units,

data = unicorns,

maxiter = 200

)

ASReml Version 4.2 11/10/2024 13:38:22

LogLik Sigma2 DF wall

1 -109.4261 0.4632316 475 13:38:22

2 -105.0501 0.4545934 475 13:38:22

3 -101.8142 0.4436619 475 13:38:22

4 -100.8141 0.4338731 475 13:38:22

5 -100.6827 0.4285963 475 13:38:22

6 -100.6821 0.4281695 475 13:38:22

plot(rr_asr)

567



Chapter 19. Random regression and character state approaches

0

10

20

30

40

−2 −1 0 1 2

Residuals

C
ou

nt

−2

−1

0

1

2

−2 0 2

Theoretical

S
am

pl
e

−2

−1

0

1

8 9 10 11

Fitted

R
es

id
ua

ls

−2

−1

0

1

0 100 200 300 400 500

Units

R
es

id
ua

ls

summary(rr_asr, coef = TRUE)$coef.fixed

solution std error z.ratio

(Intercept) 9.00181250 0.03901766 230.7112239

opp_size 1.05032703 0.06123110 17.1534907

body_size_sc 0.02725092 0.03377443 0.8068506

assay_rep_sc -0.04702032 0.03944594 -1.1920191

block -0.02168725 0.05973354 -0.3630665

wa <- wald(rr_asr, ssType = "conditional", denDF = "numeric")

ASReml Version 4.2 11/10/2024 13:38:23

LogLik Sigma2 DF wall

1 -100.6821 0.4281680 475 13:38:23

2 -100.6821 0.4281680 475 13:38:23

attr(wa$Wald, "heading") <- NULL

wa

$Wald

568



19.2. Practical

Df denDF F.inc F.con Margin Pr

(Intercept) 1 78.3 65490 53230 0.00000

opp_size 1 79.5 293 294 A 0.00000

body_size_sc 1 84.3 1 1 A 0.42202

assay_rep_sc 1 387.6 1 1 A 0.23398

block 1 318.1 0 0 A 0.71680

$stratumVariances

df Variance ID+ID:opp_size!us(2)_1:1

ID+ID:opp_size!us(2)_1:1 78.00483 0.4790737 5.216311

ID+ID:opp_size!us(2)_2:1 0.00000 0.0000000 0.000000

ID+ID:opp_size!us(2)_2:2 78.94046 1.1937287 0.000000

units!R 318.05470 0.4281680 0.000000

ID+ID:opp_size!us(2)_2:1 ID+ID:opp_size!us(2)_2:2

ID+ID:opp_size!us(2)_1:1 -3.301137 0.5221955

ID+ID:opp_size!us(2)_2:1 0.000000 0.0000000

ID+ID:opp_size!us(2)_2:2 0.000000 3.9943993

units!R 0.000000 0.0000000

units!R

ID+ID:opp_size!us(2)_1:1 1

ID+ID:opp_size!us(2)_2:1 1

ID+ID:opp_size!us(2)_2:2 1

units!R 1

summary(rr_asr)$varcomp

component std.error z.ratio bound %ch

ID+ID:opp_size!us(2)_1:1 0.0504293 0.0202756 2.487187 P 0

ID+ID:opp_size!us(2)_2:1 0.0945834 0.0240074 3.939751 P 0

ID+ID:opp_size!us(2)_2:2 0.1916592 0.0483206 3.966410 P 0

units!R 0.4281695 0.0339532 12.610582 P 0

569



Chapter 19. Random regression and character state approaches

rio_asr <- asreml(

aggression ~ opp_size + body_size_sc + assay_rep_sc + block,

random = ~ ID,

residual = ~units,

data = unicorns,

maxiter = 200

)

ASReml Version 4.2 11/10/2024 13:38:23

LogLik Sigma2 DF wall

1 -132.6114 0.5603527 475 13:38:23

2 -132.1061 0.5670427 475 13:38:23

3 -131.7956 0.5751571 475 13:38:23

4 -131.7426 0.5807624 475 13:38:23

5 -131.7425 0.5804802 475 13:38:23

pchisq(2 * (rr_asr$loglik - rio_asr$loglik), 2,

lower.tail = FALSE

)

[1] 3.241026e-14

vpredict(rr_asr, cor_is ~ V2 / (sqrt(V1) * sqrt(V3)))

Estimate SE

cor_is 0.9620736 0.1773965

pred_rr_asr <- as.data.frame(predict(rr_asr,

classify = "opp_size:ID",

levels = list(

"opp_size" =

c(opp_size = -1:1)

)

)$pvals)

570



19.2. Practical

ASReml Version 4.2 11/10/2024 13:38:24

LogLik Sigma2 DF wall

1 -100.6821 0.4281680 475 13:38:24

2 -100.6821 0.4281680 475 13:38:24

3 -100.6821 0.4281680 475 13:38:24

p_rr <- ggplot(pred_rr_asr, aes(

x = opp_size,

y = predicted.value,

group = ID

)) +

geom_line(alpha = 0.2) +

scale_x_continuous(breaks = c(-1, 0, 1)) +

labs(

x = "Opponent size (SDU)",

y = "Aggression"

) +

theme_classic()

p_rr

8

9

10

11

−1 0 1
Opponent size (SDU)

A
gg

re
ss

io
n

571



Chapter 19. Random regression and character state approaches

19.2.3.3. with MCMCglmm

prior_RR <- list(

R = list(V = 1, nu = 0.002),

G = list(

G1 = list(V = diag(2)*0.02, nu = 3,

alpha.mu = rep(0, 2),

alpha.V= diag(1000, 2, 2))))

rr_mcmc <- MCMCglmm(

aggression ~ opp_size + assay_rep_sc + body_size_sc + block,

random = ~ us(1 + opp_size):ID,

rcov = ~ units,

family = "gaussian",

prior = prior_RR,

nitt=750000,

burnin=50000,

thin=350,

verbose = FALSE,

data = unicorns,

pr = TRUE,

saveX = TRUE, saveZ = TRUE)

omar <- par()

par(mar = c(4, 2, 1.5, 2))

plot(rr_mcmc$VCV)

572



19.2. Practical

1e+05 3e+05 5e+05 7e+05

0.
05

Iterations

Trace of (Intercept):(Intercept).ID

0.00 0.05 0.10 0.15

0
10

Density of (Intercept):(Intercept).ID

N = 2000   Bandwidth = 0.00443

1e+05 3e+05 5e+05 7e+05

0.
05

Iterations

Trace of opp_size:(Intercept).ID

0.00 0.05 0.10 0.15 0.20

0
10

Density of opp_size:(Intercept).ID

N = 2000   Bandwidth = 0.005106

1e+05 3e+05 5e+05 7e+05

0.
05

Iterations

Trace of (Intercept):opp_size.ID

0.00 0.05 0.10 0.15 0.20

0
10

Density of (Intercept):opp_size.ID

N = 2000   Bandwidth = 0.005106

1e+05 3e+05 5e+05 7e+05

0.
10

0.
40

Iterations

Trace of opp_size:opp_size.ID

0.1 0.2 0.3 0.4

0
4

8

Density of opp_size:opp_size.ID

N = 2000   Bandwidth = 0.01123

1e+05 3e+05 5e+05 7e+05

0.
35

0.
55

Iterations

Trace of units

0.30 0.35 0.40 0.45 0.50 0.55

0
6

12

Density of units

N = 2000   Bandwidth = 0.007336

par(omar)

Warning in par(omar): graphical parameter "cin" cannot be set

Warning in par(omar): graphical parameter "cra" cannot be set

Warning in par(omar): graphical parameter "csi" cannot be set

573



Chapter 19. Random regression and character state approaches

Warning in par(omar): graphical parameter "cxy" cannot be set

Warning in par(omar): graphical parameter "din" cannot be set

Warning in par(omar): graphical parameter "page" cannot be set

posterior.mode(rr_mcmc$VCV[, "opp_size:opp_size.ID"]) # mean

var1

0.188436

HPDinterval(rr_mcmc$VCV[, "opp_size:opp_size.ID"])

lower upper

var1 0.1072895 0.2998701

attr(,"Probability")

[1] 0.95

rr_cor_mcmc <- rr_mcmc$VCV[, "opp_size:(Intercept).ID"] /

(sqrt(rr_mcmc$VCV[, "(Intercept):(Intercept).ID"]) *

sqrt(rr_mcmc$VCV[, "opp_size:opp_size.ID"]))

posterior.mode(rr_cor_mcmc)

var1

0.8206534

HPDinterval(rr_cor_mcmc)

lower upper

var1 0.5211717 0.9836348

attr(,"Probability")

[1] 0.95

574



19.2. Practical

df_rand <- cbind(unicorns,

rr_fit = predict(rr_mcmc, marginal = NULL)

) %>%

select(ID, opp_size, rr_fit, aggression) %>%

group_by(ID, opp_size) %>%

summarise(

rr_fit = mean(rr_fit),

aggression = mean(aggression)

) %>%

gather(

Type, Value,

rr_fit:aggression

)

`summarise()` has grouped output by 'ID'. You can override using the `.groups`

argument.

# Plot separate panels for individual lines of each type

ggplot(df_rand, aes(x = opp_size, y = Value, group = ID)) +

geom_line(alpha = 0.3) +

scale_x_continuous(breaks = c(-1, 0, 1)) +

theme_classic() +

facet_grid(. ~ Type)

575



Chapter 19. Random regression and character state approaches

aggression rr_fit

−1 0 1 −1 0 1

7

8

9

10

11

12

opp_size

V
al

ue

Table 19.4.: Variance estimated from random regression models using 3 different softwares

Method v_int cov v_sl v_r

lmer 0.0504347 0.0945863 0.1916653 0.4281625

asreml 0.0504293 0.0945834 0.1916592 0.4281695

MCMCglmm 0.0562018 0.0859172 0.1884360 0.4201010

19.2.4. Character-State approach

Need to pivot to a wider format

unicorns_cs <- unicorns %>%

select(ID, body_size, assay_rep, block, aggression, opp_size) %>%

mutate(

opp_size = recode(as.character(opp_size), "-1" = "s", "0" = "m", "1" = "l")

) %>%

dplyr::rename(agg = aggression) %>%

pivot_wider(names_from = opp_size, values_from = c(agg, assay_rep)) %>%

mutate(

body_size_sc = scale(body_size),

576



19.2. Practical

opp_order = as.factor(paste(assay_rep_s, assay_rep_m, assay_rep_l, sep = "_"))

)

str(unicorns_cs)

tibble [160 x 11] (S3: tbl_df/tbl/data.frame)

$ ID : Factor w/ 80 levels "ID_1","ID_10",..: 1 1 2 2 3 3 4 4 5 5 ...

$ body_size : num [1:160] 206 207 283 288 229 ...

$ block : num [1:160] -0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5 ...

$ agg_s : num [1:160] 7.02 8.44 7.73 8.08 8.06 8.16 8.16 8.51 7.59 6.67 ...

$ agg_l : num [1:160] 10.67 10.51 10.81 10.67 9.77 ...

$ agg_m : num [1:160] 10.22 8.95 9.43 9.46 7.63 ...

$ assay_rep_s : int [1:160] 1 3 2 2 1 1 3 3 1 1 ...

$ assay_rep_l : int [1:160] 2 2 1 1 2 2 2 1 2 2 ...

$ assay_rep_m : int [1:160] 3 1 3 3 3 3 1 2 3 3 ...

$ body_size_sc: num [1:160, 1] -1.504 -1.456 0.988 1.143 -0.76 ...

..- attr(*, "scaled:center")= num 253

..- attr(*, "scaled:scale")= num 31.1

$ opp_order : Factor w/ 6 levels "1_2_3","1_3_2",..: 2 5 4 4 2 2 5 6 2 2 ...

head(unicorns_cs)

ID body_size block agg_s agg_l agg_m

as-

say_rep_s

as-

say_rep_l

as-

say_rep_m body_size_sc

opp_or-

der

ID_1 205.8 -0.5 7.02 10.67 10.22 1 2 3 -1.5038017 1_3_2

ID_1 207.3 0.5 8.44 10.51 8.95 3 2 1 -1.4555029 3_1_2

ID_10 283.2 -0.5 7.73 10.81 9.43 2 1 3 0.9884138 2_3_1

ID_10 288.0 0.5 8.08 10.67 9.46 2 1 3 1.1429698 2_3_1

ID_11 228.9 -0.5 8.06 9.77 7.63 1 2 3 -0.7600009 1_3_2

ID_11 236.2 0.5 8.16 10.84 8.23 1 2 3 -0.5249470 1_3_2

cs_asr <- asreml(

cbind(agg_s, agg_m, agg_l) ~ trait + trait:body_size_sc +

trait:block +

577



Chapter 19. Random regression and character state approaches

trait:opp_order,

random =~ ID:us(trait),

residual =~ units:us(trait),

data = unicorns_cs,

maxiter = 200

)

ASReml Version 4.2 11/10/2024 13:40:42

LogLik Sigma2 DF wall

1 -150.1721 1.0 456 13:40:42

2 -129.6584 1.0 456 13:40:42

3 -110.4540 1.0 456 13:40:42

4 -101.8792 1.0 456 13:40:42

5 -100.0917 1.0 456 13:40:43

6 -100.0545 1.0 456 13:40:43

7 -100.0544 1.0 456 13:40:43

plot(residuals(cs_asr) ~ fitted(cs_asr))

7 8 9 10 11

−
1.

5
−

0.
5

0.
5

fitted(cs_asr)

re
si

du
al

s(
cs

_a
sr

)

578



19.2. Practical

qqnorm(residuals(cs_asr))

qqline(residuals(cs_asr))

−3 −2 −1 0 1 2 3

−
1.

5
−

0.
5

0.
5

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

hist(residuals(cs_asr))

Histogram of residuals(cs_asr)

residuals(cs_asr)

F
re

qu
en

cy

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0
50

10
0

15
0

579



Chapter 19. Random regression and character state approaches

summary(cs_asr, all = T)$coef.fixed

NULL

wa <- wald(cs_asr, ssType = "conditional", denDF = "numeric")

ASReml Version 4.2 11/10/2024 13:40:43

LogLik Sigma2 DF wall

1 -100.0544 1.0 456 13:40:43

2 -100.0544 1.0 456 13:40:43

attr(wa$Wald, "heading") <- NULL

wa

$Wald

Df denDF F.inc F.con Margin Pr

trait 3 73.2 21080.0 21080.0 0.00000

trait:body_size_sc 3 86.6 0.4 0.5 B 0.68324

trait:block 3 75.2 0.6 0.3 B 0.82418

trait:opp_order 15 240.5 1.3 1.3 B 0.23282

$stratumVariances

NULL

summary(cs_asr)$varcomp[, c("component", "std.error")]

component std.error

ID:trait!trait_agg_s:agg_s 0.1929600 0.0632187

ID:trait!trait_agg_m:agg_s -0.1685196 0.0508558

ID:trait!trait_agg_m:agg_m 0.2455944 0.0709632

ID:trait!trait_agg_l:agg_s -0.1519902 0.0566075

ID:trait!trait_agg_l:agg_m 0.1584186 0.0637500

580



19.2. Practical

component std.error

ID:trait!trait_agg_l:agg_l 0.3125481 0.0912517

units:trait!R 1.0000000 NA

units:trait!trait_agg_s:agg_s 0.3180900 0.0519814

units:trait!trait_agg_m:agg_s 0.0103624 0.0369548

units:trait!trait_agg_m:agg_m 0.3223799 0.0524829

units:trait!trait_agg_l:agg_s -0.0093117 0.0416845

units:trait!trait_agg_l:agg_m 0.1592405 0.0456931

units:trait!trait_agg_l:agg_l 0.4059421 0.0667970

cs_idh_asr <- asreml(

cbind(agg_s, agg_m, agg_l) ~ trait + trait:body_size_sc +

trait:block +

trait:opp_order,

random = ~ ID:idh(trait),

residual = ~ units:us(trait),

data = unicorns_cs,

maxiter = 200

)

ASReml Version 4.2 11/10/2024 13:40:43

LogLik Sigma2 DF wall

1 -147.0682 1.0 456 13:40:43

2 -131.2680 1.0 456 13:40:43

3 -116.9080 1.0 456 13:40:43

4 -110.9955 1.0 456 13:40:43

5 -109.9048 1.0 456 13:40:43

6 -109.8659 1.0 456 13:40:43

7 -109.8626 1.0 456 13:40:43

pchisq(2 * (cs_asr$loglik - cs_idh_asr$loglik), 3,

lower.tail = FALSE

)

581



Chapter 19. Random regression and character state approaches

[1] 0.0002038324

vpredict(cs_asr, cor_S_M ~ V2 / (sqrt(V1) * sqrt(V3)))

Estimate SE

cor_S_M -0.7741189 0.1869789

vpredict(cs_asr, cor_M_L ~ V5 / (sqrt(V3) * sqrt(V6)))

Estimate SE

cor_M_L 0.5717926 0.1469504

vpredict(cs_asr, cor_S_L ~ V4 / (sqrt(V1) * sqrt(V6)))

Estimate SE

cor_S_L -0.6189044 0.1912133

vpredict(cs_asr, prop_S ~ V1 / (V1 + V8))

Estimate SE

prop_S 0.3775756 0.0995031

vpredict(cs_asr, prop_M ~ V3 / (V3 + V10))

Estimate SE

prop_M 0.432404 0.0934477

vpredict(cs_asr, prop_L ~ V6 / (V6 + V13))

582



19.2. Practical

Estimate SE

prop_L 0.4350067 0.0949851

init_CS_cor1_tri <- c(

0.999,

0.999, 0.999,

1, 1, 1

)

names(init_CS_cor1_tri) <- c(

"F",

"F", "F",

"U", "U", "U"

)

cs_asr_cor1_tri <- asreml(

cbind(agg_s, agg_m, agg_l) ~ trait + trait:body_size_sc +

trait:block +

trait:opp_order,

random = ~ ID:corgh(trait, init = init_CS_cor1_tri),

residual = ~ units:us(trait),

data = unicorns_cs,

maxiter = 500

)

ASReml Version 4.2 11/10/2024 13:40:43

LogLik Sigma2 DF wall

1 -228.0158 1.0 456 13:40:43 ( 3 restrained)

2 -150.0138 1.0 456 13:40:43

3 -129.5803 1.0 456 13:40:43

4 -119.9924 1.0 456 13:40:43 ( 1 restrained)

5 -116.9067 1.0 456 13:40:43 ( 1 restrained)

6 -115.7721 1.0 456 13:40:43

7 -115.6466 1.0 456 13:40:43

8 -115.5882 1.0 456 13:40:43

583



Chapter 19. Random regression and character state approaches

9 -115.5334 1.0 456 13:40:43

10 -115.4795 1.0 456 13:40:43

11 -115.4273 1.0 456 13:40:43

12 -115.3777 1.0 456 13:40:43

13 -115.3314 1.0 456 13:40:43

14 -115.2892 1.0 456 13:40:43

15 -115.2511 1.0 456 13:40:43

16 -115.2174 1.0 456 13:40:43

17 -115.1879 1.0 456 13:40:43

18 -115.1624 1.0 456 13:40:43

19 -115.1406 1.0 456 13:40:43

20 -115.1221 1.0 456 13:40:43

21 -115.1065 1.0 456 13:40:43

22 -115.0934 1.0 456 13:40:43

23 -115.0825 1.0 456 13:40:43

24 -115.0731 1.0 456 13:40:43 ( 1 restrained)

25 -115.0640 1.0 456 13:40:43

26 -115.0637 1.0 456 13:40:43

pchisq(2 * (cs_asr$loglik - cs_asr_cor1_tri$loglik),

3,

lower.tail = FALSE

)

[1] 1.367792e-06

df_CS_pred <- as.data.frame(predict(cs_asr,

classify = "trait:ID"

)$pvals)

ASReml Version 4.2 11/10/2024 13:40:43

LogLik Sigma2 DF wall

1 -100.0544 1.0 456 13:40:43

2 -100.0544 1.0 456 13:40:43

584



19.2. Practical

3 -100.0544 1.0 456 13:40:43

# Add numeric variable for easier plotting

# of opponent size

df_CS_pred <- df_CS_pred %>%

mutate(sizeNum = ifelse(trait == "agg_s", -1,

ifelse(trait == "agg_m", 0, 1)

))

p_cs <- ggplot(df_CS_pred, aes(

x = sizeNum,

y = predicted.value,

group = ID

)) +

geom_line(alpha = 0.2) +

scale_x_continuous(breaks = c(-1, 0, 1)) +

labs(

x = "Opponent size (SDU)",

y = "Aggression"

) +

theme_classic()

p_cs

8

9

10

11

−1 0 1
Opponent size (SDU)

A
gg

re
ss

io
n

585



Chapter 19. Random regression and character state approaches

unicorns <- arrange(unicorns, opp_size, by_group = ID)

p_obs <- ggplot(unicorns[unicorns$block==-0.5,], aes(x = opp_size, y = aggression, group = ID)) +

geom_line(alpha = 0.3) +

scale_x_continuous(breaks = c(-1, 0, 1)) +

labs(

x = "Opponent size (SDU)",

y = "Aggression"

) +

ggtitle("Observed") +

ylim(5.9, 12) +

theme_classic()

p_rr <- p_rr + ggtitle("Random regression") + ylim(5.9, 12)

p_cs <- p_cs + ggtitle("Character-State") + ylim(5.9, 12)

p_obs + p_rr + p_cs

Warning: Removed 2 rows containing missing values or values outside the scale range

(`geom_line()`).

6

8

10

12

−1 0 1
Opponent size (SDU)

A
gg

re
ss

io
n

Observed

6

8

10

12

−1 0 1
Opponent size (SDU)

A
gg

re
ss

io
n

Random regression

6

8

10

12

−1 0 1
Opponent size (SDU)

A
gg

re
ss

io
n

Character−State

586



19.2. Practical

19.2.5. From random regression to character-state

var_mat_asr <- function(model, var_names, pos){

size <- length(var_names)

v_out <- matrix(NA, ncol = size, nrow = size)

rownames(v_out) <- var_names

colnames(v_out) <- var_names

v_out[upper.tri(v_out, diag = TRUE)] <- summary(model)$varcomp[pos, 1]

v_out <- forceSymmetric(v_out, uplo = "U")

as.matrix(v_out)

}

v_id_rr <- var_mat_asr(rr_asr, c("v_int", "v_sl"), 1:3)

knitr::kable(v_id_rr, digits = 3)

v_int v_sl

v_int 0.050 0.095

v_sl 0.095 0.192

v_id_cs <- var_mat_asr(cs_asr, c("v_s", "v_m", "v_l"), 1:6)

knitr::kable(v_id_cs, digits = 3)

v_s v_m v_l

v_s 0.193 -0.169 -0.152

v_m -0.169 0.246 0.158

v_l -0.152 0.158 0.313

We also need to make a second matrix, let’s call it Q (no particular reason, pick something else if you want). This

is going to contain the values needed to turn an individual’s intercept (mean) and slope (plasticity) deviations into

estimates of environment-specific individual merit in a character state model.

What do we mean by this? Well if an individual i has an intercept deviation of IDint(i) and a slope deviation of IDslp(i)

for a given value of the environment opp_size we might be interested in:

587



Chapter 19. Random regression and character state approaches

IDi = (1 x IDint(i)) + (opp_size x IDslp(i))

We want to look at character states representing the three observed values of opp_size here so

Q <- as.matrix(cbind(c(1, 1, 1),

c(-1, 0, 1)))

Then we can generate our among-individual covariance matrix environment specific aggresiveness, which we can

call ID_cs_rr by matrix multiplication:

ID_cs_rr<- Q %*% v_id_rr %*%t(Q) #where t(Q) is the transpose of Q

#and %*% is matrix multiplication

ID_cs_rr #rows and columns correspond to aggressiveness at opp_size=-1,0,1 in that order

[,1] [,2] [,3]

[1,] 0.05292184 -0.04415404 -0.1412299

[2,] -0.04415404 0.05042932 0.1450127

[3,] -0.14122993 0.14501267 0.4312553

cov2cor(ID_cs_rr) #Converting to a correlation scale

[,1] [,2] [,3]

[1,] 1.0000000 -0.8546956 -0.9348503

[2,] -0.8546956 1.0000000 0.9833253

[3,] -0.9348503 0.9833253 1.0000000

cov2cor(v_id_cs)

v_s v_m v_l

v_s 1.0000000 -0.7741189 -0.6189044

v_m -0.7741189 1.0000000 0.5717926

v_l -0.6189044 0.5717926 1.0000000

588



19.2. Practical

19.2.6. Conclusions

19.2.7. Happy multivariate models

Figure 19.3.: A female blue dragon of the West

589



Chapter 20
Multivariate mixed models

20.1. Lecture

Amazing beasties and crazy animals

Figure 20.1.: Dream pet dragon

add a comparison of lrt

20.2. Practical

In this practical, we have collected data on the amazing blue dragon of the East that roam the sky at night.

We will use two different to fit more complex models that are not possible with lmer() from lme4 (Bates et

al. 2015). We will use:

590



20.2. Practical

• asreml-R which is a commercial software developed by VSNi (The VSNi Team 2023). ASReml fit models

using a maximum likelihood approach, is quite flexible and fast.

• MCMCglmm which is free and open-source and fit model using a Bayesian approach (Hadfield 2010). It is super

flexible and allow to fit a wide diversity of distribution.

The aims of the practical are to learn:

• How to phrase questions of interest in terms of variances and covariances (or derived correlations or regres-

sions);

• How to incorporate more advanced model structures, such as:

– Fixed effects that apply only to a subset of the response traits;

– Traits which are measured a different number of times (e.g., repeated measures of behaviour and a single

value of breeding success);

• Hypothesis testing using likelihood ratio tests.

20.2.1. R packages needed

First we load required libraries

library(lmerTest)

library(tidyverse)

library(asreml)

library(MCMCglmm)

library(nadiv)

20.2.2. The blue dragon of the East

For this practical, we have collected data on the amazing blue dragon of the East that roam the sky at night.

591



Chapter 20. Multivariate mixed models

Figure 20.2.: Blue dragon male

We tagged all dragons individually when they hatch from their eggs. Here, we concentrate on female dragon that

produce a single clucth of eggs per mating seasons. Adult femlae blue dragons need to explore vast amount of land

to find a compatible male. We thus hypothesized that maximum flight speed as well as exploration are key traits to

determine fitness. We were able to obtain repeated measures of flying speed and exploration on 80 adult females

during one mating season and also measure the number of egg layed at the end of the season.

Each females was capture 4 times during the season and each time we measured the maximum flying speed using a

wind tunnel and exploration using a openfield test.

The data frame has 6 variables:

• ID: Individual identity

• assay_rep: the repeat number of the behavioural assay

• max_speed: maximum flying speed

• exploration:

• eggs: measure of reproductive succes measured only once per individual

• body_size: individual body size measured on the day of the test

df_dragons <- read.csv("data/dragons.csv")

str(df_dragons)

'data.frame': 320 obs. of 6 variables:

$ ID : chr "S_1" "S_1" "S_1" "S_1" ...

$ assay_rep : int 1 2 3 4 1 2 3 4 1 2 ...

$ max_speed : num 58.7 57.9 64.3 61.4 65.5 ...

592



20.2. Practical

$ exploration: num 126 125 127 127 125 ...

$ eggs : int 39 NA NA NA 56 NA NA NA 51 NA ...

$ body_size : num 21.7 21.5 21.3 20.8 25.7 ...

To help with convergence of the model, and also help with parameter interpretation, we will first scale our covariates.

df_dragons <- df_dragons %>%

mutate(

body_size_sc = scale(body_size),

assay_rep_sc = scale(assay_rep, scale = FALSE)

)

20.2.3. Multiple univariate models

We first use the lme4 to determine the proportion of phenotypic variation (adjusted for fixed effects) that is due

to differences among individuals, separately for each trait with repeated measures.

20.2.3.1. Flying speed

Our model includes fixed effects of the assay repeat number (centred) and individual body size (centred and scaled to

standard deviation units), as we wish to control for any systematic effects of these variables on individual behaviour.

Be aware that controlling variables are at your discretion — for example, while we want to characterise among-

individual variance in flying speed after controlling for size effects in this study, others may wish to characterise

among-individual variance in flying speed without such control. Using techniques shown later in the practical,

it would be entirely possible to characterise both among-individual variance in flying speed and in size, and the

among-individual covariance between these measurements.

lmer_f <- lmer(max_speed ~ assay_rep_sc + body_size_sc + (1 | ID),

data = df_dragons

)

par(mfrow = c(1, 3))

plot(resid(lmer_f, type = "pearson") ~ fitted(lmer_f))

qqnorm(residuals(lmer_f))

qqline(residuals(lmer_f))

hist(residuals(lmer_f))

593



Chapter 20. Multivariate mixed models

58 62 66

−
5

0
5

fitted(lmer_f)

re
si

d(
lm

er
_f

, t
yp

e 
=

 "
pe

ar
so

n"
)

−3 −1 1 2 3
−

5
0

5

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Histogram of residuals(lmer_f)

residuals(lmer_f)

F
re

qu
en

cy

−10 0 5 10

0
20

40
60

80

Figure 20.3.: Checking assumptions of model lmer_f

summary(lmer_f)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula: max_speed ~ assay_rep_sc + body_size_sc + (1 | ID)

Data: df_dragons

REML criterion at convergence: 1791.4

Scaled residuals:

Min 1Q Median 3Q Max

-2.3645 -0.6496 -0.1154 0.6463 2.6894

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 6.951 2.636

Residual 11.682 3.418

Number of obs: 320, groups: ID, 80

594



20.2. Practical

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 63.5344 0.3513 78.0954 180.870 <2e-16 ***

assay_rep_sc -0.1519 0.1709 238.9807 -0.889 0.375

body_size_sc 0.4468 0.3445 88.0328 1.297 0.198

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) assy__

assay_rp_sc 0.000

body_siz_sc 0.000 -0.002

Having examined diagnostic plots of the model fit, we can check the model summary. We are interested in the random

effects section of the lme4 model output (specifically the variance component — note that the standard deviation

here is simply the square root of the variance). Evidence for ‘animal personality’ (or ‘consistent among-individual

differences in behaviour’) in the literature is largely taken from the repeatability of behaviorual traits: we can

compute this repeatability (also known as the intraclass correlation coefficient) by dividing the variance in the trait

due to differences among individuals (𝑉𝐼𝐷) by the total phenotypic variance after accounting for the fixed effects

(𝑉𝐼𝐷 + 𝑉𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 ).

rep_flying <- as.data.frame(VarCorr(lmer_f)) %>%

select(grp, vcov) %>%

spread(grp, vcov) %>%

mutate(repeatability = ID / (ID + Residual))

rep_flying

Table 20.1.: Variance components and repeatbility for the maximum flying speed of blue dragons

ID Residual repeatability

6.951 11.682 0.373

So we can see that 37.31% of the phenotypic variation in boldness (having controlled for body size and assay repeat

number) is due to differences among individuals.

595



Chapter 20. Multivariate mixed models

20.2.3.2. Exploration

lmer_e <- lmer(exploration ~ assay_rep_sc + body_size_sc + (1 | ID),

data = df_dragons

)

par(mfrow = c(1, 3))

plot(resid(lmer_e, type = "pearson") ~ fitted(lmer_e))

qqnorm(residuals(lmer_e))

qqline(residuals(lmer_e))

hist(residuals(lmer_e))

124 128

−
5

0
5

fitted(lmer_e)

re
si

d(
lm

er
_e

, t
yp

e 
=

 "
pe

ar
so

n"
)

−3 −1 1 2 3

−
5

0
5

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Histogram of residuals(lmer_e)

residuals(lmer_e)

F
re

qu
en

cy

−10 0 5 10

0
20

40
60

80

Figure 20.4.: Checking assumptions of model lmer_e

summary(lmer_e)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula: exploration ~ assay_rep_sc + body_size_sc + (1 | ID)

Data: df_dragons

REML criterion at convergence: 1691.2

596



20.2. Practical

Scaled residuals:

Min 1Q Median 3Q Max

-2.73290 -0.62520 0.01635 0.55523 2.95896

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 3.623 1.903

Residual 9.091 3.015

Number of obs: 320, groups: ID, 80

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 127.22524 0.27148 78.08871 468.639 <2e-16 ***

assay_rep_sc -0.07811 0.15076 238.99943 -0.518 0.605

body_size_sc 0.26114 0.26806 85.68180 0.974 0.333

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) assy__

assay_rp_sc 0.000

body_siz_sc 0.000 -0.002

So the model looks good and we can see our estimates for both fixed and random effects. We can now estimate the

repeatbility of exploration.

rep_expl <- as.data.frame(VarCorr(lmer_e)) %>%

select(grp, vcov) %>%

spread(grp, vcov) %>%

mutate(repeatability = ID / (ID + Residual))

rep_expl

597



Chapter 20. Multivariate mixed models

Table 20.2.: Variance components and repeatability for exploration behaviour of blue dragons

ID Residual repeatability

3.623 9.091 0.285

Both of traits of interest are repeatable at the among-individual level. So, the remaining question is estimating the

relation between these two traits. Are individuals that are consistently faster than average also more exploratory than

average (and vice versa)?

20.2.3.3. Correlation using BLUPs

Using BLUPs to estimate correlations between traits or to further investigate biological associations can lead to

spurious results and anticonservative hypothesis tests and narrow confidence intervals. Hadfield et al. (2010) discuss

the problem as well as present some alternative method to avoid the problem using Bayesian methods. However, it is

always preferable to use multivariate models when possible.

We need to create a data frame that contain the BLUPs from both univariate models.

df_blups_fe <- merge(

as.data.frame(ranef(lmer_f)),

as.data.frame(ranef(lmer_e)),

by = "grp"

) %>%

mutate(

speed = condval.x,

exploration = condval.y

)

We can now test the correlation among-individual between flying speed and exploration.

(cor_blups <- with(df_blups_fe, cor.test(speed, exploration)))

Pearson's product-moment correlation

598



20.2. Practical

data: speed and exploration

t = 3.2131, df = 78, p-value = 0.00191

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.1320924 0.5223645

sample estimates:

cor

0.3418867

ggplot(df_blups_fe, aes(x = exploration, y = speed)) +

geom_point() +

labs(xlab = "Exploration (BLUP)", ylab = "Flying speed (BLUP)") +

theme_classic()

−6

−3

0

3

6

−4 −2 0 2 4
exploration

sp
ee

d

Figure 20.5.: Relation between exploration and flying speed using BLUPs from univariate models

As you can see, we get a positive correlation with a very small p-value (P = 0.00191), indicating that these traits are

involved in a behavioural syndrome. While the correlation itself is fairly weak ($r = 0.342), it appears to be highly

significant, and suggests that individuals that are faster than average also tend to be more exploratory than average.

However, as discussed in Hadfield et al. (2010) and Houslay and Wilson (2017), using BLUPs in this way leads to

anticonservative significance tests. This is because the error inherent in their prediction is not carried forward from

599



Chapter 20. Multivariate mixed models

the lmer models to the subsequent analysis (in this case, a correlation test). To illustrate this point quickly, below we

plot the individual estimates along with their associated standard errors.

ggplot(df_blups_fe, aes(x = exploration, y = speed)) +

geom_point() +

geom_linerange(aes(

xmin = exploration - condsd.x,

xmax = exploration + condsd.x

)) +

geom_linerange(aes(

ymin = speed - condsd.y,

ymax = speed + condsd.y

)) +

labs(

xlab = "Exploration (BLUP +/- SE)",

ylab = "Flying speed (BLUP +/- SE)"

) +

theme_classic()

−4

0

4

−6 −3 0 3
exploration

sp
ee

d

Figure 20.6.: Relation between exploration and flying speed using BLUPs from univariate models including +/- SE
as error bars

600



20.2. Practical

20.2.4. Multivariate approach

20.2.4.1. Based on ASRemlR

The correct approach for testing the hypothesised relation between speed and exploration uses both response variables

in a two-trait (‘bivariate’) mixed model. This model estimates the among-individual variance for each response

variable (and the covariance between them). Separate (co)variances are also fitted for the residual variation. The

bivariate model also allows for fixed effects to be fitted on both response variables. We set up our model using the

asreml function call, with our bivariate response variable being exploration and flying speed bound together

using cbind. You will also note that we scale our response variables, meaning that each is centred at their mean

value and standardised to units of 1 standard deviation. This is not essential, but simply makes it easier for the

model to be fit. Scaling the response variables also aids our understanding of the output, as both flying speed and

exploration are now on the same scale.

asreml can be a bit specific sometime and random effects should absolutely be factor and not character or

integer

df_dragons <- df_dragons %>%

mutate(

ID = as.factor(ID),

speed_sc = scale(max_speed),

exploration_sc = scale(exploration)

)

asr_us <- asreml(

cbind(speed_sc, exploration_sc) ~ trait +

trait:assay_rep_sc + trait:body_size_sc,

random = ~ ID:us(trait),

residual = ~ units:us(trait),

data = df_dragons,

maxiter = 100

)

ASReml Version 4.2 11/10/2024 13:44:46

LogLik Sigma2 DF wall

601



Chapter 20. Multivariate mixed models

1 -333.1053 1.0 634 13:44:46

2 -303.6372 1.0 634 13:44:46

3 -274.8492 1.0 634 13:44:46

4 -260.2431 1.0 634 13:44:46

5 -256.1178 1.0 634 13:44:46

6 -255.8906 1.0 634 13:44:46

7 -255.8893 1.0 634 13:44:46

On the right hand side of our model formula, we use the trait keyword to specify that this is a multivariate model

— trait itself tells the model to give us the intercept for each trait. We then interact trait with the fixed effects,

assay_rep_sc and body_size_sc, so that we get estimates for the effect of these variables on each of teh 2 traits.

The random effects structure starts with the random effects, where we tell the model to fit an unstructured (us)

covariance matrix for the grouping variable ID. This means that the variance in exploration due to differences

among individuals, the variance in boldness due to differences among individuals, and the covariance between these

variances will be estimated. Next, we set a structure for the residual variation (residual), which is also sometimes

known as the within-individual variation. As we have repeated measures for both traits at the individual level, we

also set an unstructured covariance matrix, which estimates the residual variance for each trait and also allows the

residuals to covary across the two traits. Finally, we provide the name of the data frame, and a maximum number of

iterations for ASReml to attempt to fit the model. After the model has been fit by ASReml, we can check the fit using

the same type of model diagnostic plots as we use for lme4:

par(mfrow = c(1, 3))

plot(residuals(asr_us) ~ fitted(asr_us))

qqnorm(residuals(asr_us))

qqline(residuals(asr_us))

hist(residuals(asr_us))

602



20.2. Practical

−1.0 0.0 1.0

−
2

−
1

0
1

2

fitted(asr_us)

re
si

du
al

s(
as

r_
us

)

−3 −1 1 3
−

2
−

1
0

1
2

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Histogram of residuals(asr_us)

residuals(asr_us)

F
re

qu
en

cy

−2 0 1 2 3

0
50

10
0

15
0

Figure 20.7.: Checking assumptions of model asr_us

The summary part of the ASReml model fit contains a large amount of information, so it is best to look only at

certain parts of it at a single time. While we are not particularly interested in the fixed effects for current purposes,

you can inspect these using the following code to check whether there were any large effects of assay repeat or

body size on either trait:

summary(asr_us, coef = TRUE)$coef.fixed

solution std error z.ratio

trait_speed_sc -7.150609e-17 0.08140684 -8.783795e-16

trait_exploration_sc -2.138998e-16 0.07631479 -2.802861e-15

trait_speed_sc:assay_rep_sc -3.521261e-02 0.03960492 -8.890967e-01

trait_exploration_sc:assay_rep_sc -2.195541e-02 0.04238056 -5.180538e-01

trait_speed_sc:body_size_sc 1.040579e-01 0.07972962 1.305135e+00

trait_exploration_sc:body_size_sc 7.269022e-02 0.07533421 9.649033e-01

wa <- wald(asr_us, ssType = "conditional", denDF = "numeric")

ASReml Version 4.2 11/10/2024 13:44:46

LogLik Sigma2 DF wall

603



Chapter 20. Multivariate mixed models

1 -255.8893 1.0 634 13:44:46

2 -255.8893 1.0 634 13:44:46

attr(wa$Wald, "heading") <- NULL

wa

$Wald

Df denDF F.inc F.con Margin Pr

trait 2 77.1 0.0000 0.0000 1.00000

trait:assay_rep_sc 2 237.9 0.3955 0.3984 B 0.67184

trait:body_size_sc 2 86.6 0.9871 0.9871 B 0.37679

$stratumVariances

NULL

We can see that there is a separate intercept for both personality traits (no surprise that these are very close to zero,

given that we mean-centred and scaled each trait before fitting the model), and an estimate of the effect of assay

repeat and body size on both traits. None of these appear to be large effects, so let’s move on to the more interesting

parts — the random effects estimates:

summary(asr_us)$varcomp

component std.error z.ratio bound %ch

ID:trait!trait_speed_sc:speed_sc 0.3733306 0.0860712 4.337461 P 0

ID:trait!trait_exploration_sc:speed_sc 0.0883864 0.0606701 1.456837 P 0

ID:trait!trait_exploration_sc:exploration_sc 0.2863101 0.0763725 3.748865 P 0

units:trait!R 1.0000000 NA NA F 0

units:trait!trait_speed_sc:speed_sc 0.6274169 0.0574028 10.930073 P 0

units:trait!trait_exploration_sc:speed_sc 0.3263211 0.0482917 6.757286 P 0

units:trait!trait_exploration_sc:exploration_sc 0.7184419 0.0657278 10.930563 P 0

In the above summary table, we have the among-individual (co)variances listed first (starting with ID), then the

residual (or within-individual) (co)variances (starting with R). You will notice that the variance estimates here are

604



20.2. Practical

actually close to the lme4 repeatability estimates, because our response variables were scaled to phenotypic standard

deviations. We can also find the ‘adjusted repeatability’ (i.e., the repeatability conditional on the fixed effects)

for each trait by dividing its among-individual variance estimate by the sum of its among-individual and residual

variances. Here, we use the vpredict function to estimate the repeatability and its standard error for each trait,

conditional on the effects of assay repeat and body size. For this function, we provide the name of the model object,

followed by a name that we want to give the estimate being returned, and a formula for the calculation. Each ‘V’

term in the formula refers to a variance component, using its position in the model summary shown above.

vpredict(asr_us, rep_speed ~ V1 / (V1 + V5))

Estimate SE

rep_speed 0.3730518 0.0612403

vpredict(asr_us, rep_expl ~ V3 / (V3 + V7))

Estimate SE

rep_expl 0.284956 0.0611354

We can also use this function to calculate the estimate and standard error of the correlation from our model

(co)variances. We do this by specifying the formula for the correlation:

(cor_fe <- vpredict(asr_us, cor_expl_speed ~ V2 / (sqrt(V1 * V3))))

Estimate SE

cor_expl_speed 0.2703462 0.1594097

In this case, the estimate is similar (here, slightly lower) than our correlation estimate using BLUPs. However, if we

consider confidence intervals as +/- 1.96 SE around the estimate, the lower bound of the confidence interval would

actually be | |Estimate | |:————–|:——–| |cor_expl_speed |-0.0421 | . With confidence intervals straddling zero,

we would conclude that this correlation is likely non-significant. As the use of standard errors in this way is only

approximate, we should also test our hypothesis formally using likelihood ratio tests.

605



Chapter 20. Multivariate mixed models

20.2.4.1.1. Hypothesis testing We can now test the statistical significance of this correlation directly, by fitting

a second model without the among-individual covariance between our two traits, and then using a likelihood ratio

test to determine whether the model with the covariance produces a better fit. Here, we use the idh structure for our

random effects. This stands for ‘identity matrix’ (i.e., with 0s on the off-diagonals) with heterogeneous variances

(i.e., the variance components for our two response traits are allowed to be different from one another). The rest of

the model is identical to the previous version.

asr_idh <- asreml(

cbind(speed_sc, exploration_sc) ~ trait +

trait:assay_rep_sc + trait:body_size_sc,

random = ~ ID:idh(trait),

residual = ~ units:us(trait),

data = df_dragons,

maxiter = 100

)

ASReml Version 4.2 11/10/2024 13:44:47

LogLik Sigma2 DF wall

1 -327.0510 1.0 634 13:44:47

2 -299.8739 1.0 634 13:44:47

3 -273.6894 1.0 634 13:44:47

4 -260.8385 1.0 634 13:44:47

5 -257.3307 1.0 634 13:44:47

6 -257.1202 1.0 634 13:44:47

7 -257.1176 1.0 634 13:44:47

The likelihood ratio test is calculated as twice the difference between model log-likelihoods, on a single degree of

freedom (the covariance term):

(p_biv <- pchisq(2 * (asr_us$loglik - asr_idh$loglik),

df = 1,

lower.tail = FALSE

))

[1] 0.1170385

606



20.2. Practical

In sharp contrast to the highly-significant P-value given by a correlation test using BLUPs, here we find no evidence

for a correlation between flying speed and exploration. To better understand why BLUPs produce an anticonservative

p-value in comparison to multivariate models, we should plot the correlation estimates and their confidence intervals.

The confidence intervals are taken directly from the cor.test function for BLUPs, and for ASReml they are calculated

as 1.96 times the standard error from the vpredict function.

df_cor <- data.frame(

Method = c("ASReml", "BLUPs"),

Correlation = c(as.numeric(cor_fe[1]), cor_blups$estimate),

low = c(as.numeric(cor_fe[1] - 1.96 * cor_fe[2]), cor_blups$conf.int[1]),

high = c(as.numeric(cor_fe[1] + 1.96 * cor_fe[2]), cor_blups$conf.int[2])

)

ggplot(df_cor, aes(x = Method, y = Correlation)) +

geom_point() +

geom_linerange(aes(ymin = low, ymax = high)) +

ylim(-1, 1) +

geom_hline(yintercept = 0, linetype = 2) +

theme_classic()

−1.0

−0.5

0.0

0.5

1.0

ASReml BLUPs
Method

C
or

re
la

tio
n

Figure 20.8.: Correlation estimates (with CI) using 2 different methods

Here we can clearly see that the BLUPs method - having failed to carry through the error around the predictions of

607



Chapter 20. Multivariate mixed models

individual-level estimates - is anticonservative, with small confidence intervals and a correspondingly small P-value

(P = 0.00191). Testing the syndrome directly in a bivariate model that retains all the data, by comparison, enables

us to capture the true uncertainty about the estimate of the correlation. This is reflected in the larger confidence

intervals and, in this case, the non-significant P-value (P = 0.117).

20.2.4.1.2. Conclusions To conclude, then: we found that the correlation between flying speed and exploration

tends to be positive among female blue dragon. This correlation is not statistically significant, and thus does not

provide strong evidence. However, inappropriate analysis of BLUP extracted from univariate models would lead to a

different (erroneous) conclusion.

20.2.4.2. Using MCMCglmm

In this section I present the code needed to fit the model and explain only the specific aspect of fittign and evaluating

the models with MCMCglmm.

To be completed. with more details

First, we need to create a ‘prior’ for our model. We recommend reading up on the use of priors (see the course notes

of MCMCglmm Hadfield 2010); briefly, we use a parameter-expanded prior here that should be uninformative for our

model. One of the model diagnostic steps that should be used later is to check that the model is robust to multiple

prior specifications.

prior_1ex <- list(

R = list(V = diag(2), nu = 0.002),

G = list(G1 = list(

V = diag(2) * 0.02, nu = 3,

alpha.mu = rep(0, 2),

alpha.V = diag(1000, 2, 2)

))

)

mcmc_us <- MCMCglmm(cbind(speed_sc, exploration_sc) ~ trait - 1 +

trait:assay_rep_sc +

trait:body_size_sc,

random = ~ us(trait):ID,

608



20.2. Practical

rcov = ~ us(trait):units,

family = c("gaussian", "gaussian"),

prior = prior_1ex,

nitt = 420000,

burnin = 20000,

thin = 100,

verbose = FALSE,

data = df_dragons

)

omar <- par()

par(mar = c(4, 2, 1.5, 2))

plot(mcmc_us$VCV[, c(1, 2, 4)])

1e+05 2e+05 3e+05 4e+05

0.
2

0.
7

Iterations

Trace of traitspeed_sc:traitspeed_sc.ID

0.2 0.4 0.6 0.8

0
2

4

Density of traitspeed_sc:traitspeed_sc.ID

N = 4000   Bandwidth = 0.0172

1e+05 2e+05 3e+05 4e+05

−
0.

1
0.

3

Iterations

Trace of traitexploration_sc:traitspeed_sc.ID

−0.1 0.0 0.1 0.2 0.3 0.4 0.5

0
3

6

Density of traitexploration_sc:traitspeed_sc.ID

N = 4000   Bandwidth = 0.01191

1e+05 2e+05 3e+05 4e+05

0.
1

0.
6

Iterations

Trace of traitexploration_sc:traitexploration_sc.ID

0.0 0.2 0.4 0.6 0.8

0
2

4

Density of traitexploration_sc:traitexploration_sc.ID

N = 4000   Bandwidth = 0.01625

Figure 20.9.: MCMC trace and Posterior distribution of the (co)variance estimates of model mcmc_us

plot(mcmc_us$VCV[, c(5, 6, 8)])

609



Chapter 20. Multivariate mixed models

1e+05 2e+05 3e+05 4e+05
0.

5
0.

8

Iterations

Trace of traitspeed_sc:traitspeed_sc.units

0.5 0.6 0.7 0.8 0.9

0
3

6

Density of traitspeed_sc:traitspeed_sc.units

N = 4000   Bandwidth = 0.01181

1e+05 2e+05 3e+05 4e+05

0.
2

0.
5

Iterations

Trace of traitexploration_sc:traitspeed_sc.units

0.2 0.3 0.4 0.5 0.6

0
4

8

Density of traitexploration_sc:traitspeed_sc.units

N = 4000   Bandwidth = 0.01029

1e+05 2e+05 3e+05 4e+05

0.
6

1.
0

Iterations

Trace of traitexploration_sc:traitexploration_sc.units

0.5 0.6 0.7 0.8 0.9 1.0 1.1

0
3

Density of traitexploration_sc:traitexploration_sc.units

N = 4000   Bandwidth = 0.01392

Figure 20.10.: MCMC trace and Posterior distribution of the (co)variance estimates of model mcmc_us

par(omar)

summary(mcmc_us)

Iterations = 20001:419901

Thinning interval = 100

Sample size = 4000

DIC: 1596.597

G-structure: ~us(trait):ID

post.mean l-95% CI u-95% CI eff.samp

traitspeed_sc:traitspeed_sc.ID 0.38963 0.23132 0.5751 4000

traitexploration_sc:traitspeed_sc.ID 0.08324 -0.02864 0.2071 4000

traitspeed_sc:traitexploration_sc.ID 0.08324 -0.02864 0.2071 4000

traitexploration_sc:traitexploration_sc.ID 0.29618 0.14854 0.4693 4000

610



20.2. Practical

R-structure: ~us(trait):units

post.mean l-95% CI u-95% CI

traitspeed_sc:traitspeed_sc.units 0.6385 0.5310 0.7605

traitexploration_sc:traitspeed_sc.units 0.3347 0.2345 0.4325

traitspeed_sc:traitexploration_sc.units 0.3347 0.2345 0.4325

traitexploration_sc:traitexploration_sc.units 0.7325 0.6020 0.8703

eff.samp

traitspeed_sc:traitspeed_sc.units 3759

traitexploration_sc:traitspeed_sc.units 4000

traitspeed_sc:traitexploration_sc.units 4000

traitexploration_sc:traitexploration_sc.units 4000

Location effects: cbind(speed_sc, exploration_sc) ~ trait - 1 + trait:assay_rep_sc + trait:body_size_sc

post.mean l-95% CI u-95% CI eff.samp

traitspeed_sc -0.0005335 -0.1546478 0.1639974 4000

traitexploration_sc -0.0008756 -0.1534328 0.1420720 4000

traitspeed_sc:assay_rep_sc -0.0350202 -0.1152836 0.0439971 4000

traitexploration_sc:assay_rep_sc -0.0219956 -0.1064651 0.0603338 4053

traitspeed_sc:body_size_sc 0.1052286 -0.0477453 0.2668186 4000

traitexploration_sc:body_size_sc 0.0730324 -0.0758619 0.2203125 4000

pMCMC

traitspeed_sc 0.982

traitexploration_sc 0.993

traitspeed_sc:assay_rep_sc 0.392

traitexploration_sc:assay_rep_sc 0.613

traitspeed_sc:body_size_sc 0.189

traitexploration_sc:body_size_sc 0.332

mcmc_prop_f <- mcmc_us$VCV[, 1] /

(mcmc_us$VCV[, 1] + mcmc_us$VCV[, 5])

plot(mcmc_prop_f)

611



Chapter 20. Multivariate mixed models

1e+05 3e+05

0.
2

0.
4

0.
6

Iterations

Trace of var1

0.2 0.4 0.6

0
1

2
3

4
5

6

Density of var1

N = 4000   Bandwidth = 0.01224

Figure 20.11.: Posterior trace and distribution of the repeatability in flying speed

posterior.mode(mcmc_prop_f)

var1

0.3640202

HPDinterval(mcmc_prop_f)

lower upper

var1 0.2542384 0.4885375

attr(,"Probability")

[1] 0.95

mcmc_prop_e <- mcmc_us$VCV[, 4] /

(mcmc_us$VCV[, 4] + mcmc_us$VCV[, 8])

plot(mcmc_prop_e)

612



20.2. Practical

1e+05 3e+05

0.
1

0.
3

0.
5

Iterations

Trace of var1

0.0 0.2 0.4

0
1

2
3

4
5

6

Density of var1

N = 4000   Bandwidth = 0.01269

Figure 20.12.: Posterior trace and distribution of the repeatbility of exploration

posterior.mode(mcmc_prop_e)

var1

0.2600335

HPDinterval(mcmc_prop_e)

lower upper

var1 0.163859 0.4112182

attr(,"Probability")

[1] 0.95

mcmc_cor_fe <- mcmc_us$VCV[, 2] /

sqrt(mcmc_us$VCV[, 1] * mcmc_us$VCV[, 4])

plot(mcmc_cor_fe)

613



Chapter 20. Multivariate mixed models

1e+05 3e+05

−
0.

4
0.

0
0.

4

Iterations

Trace of var1

−0.6 0.0 0.4 0.8

0.
0

1.
0

2.
0

Density of var1

N = 4000   Bandwidth = 0.03105

Figure 20.13.: Posterior trace and distribution of the correlation between flying speed and exploration

posterior.mode(mcmc_cor_fe)

var1

0.2228099

HPDinterval(mcmc_cor_fe)

lower upper

var1 -0.07008243 0.5308713

attr(,"Probability")

[1] 0.95

df_cor[3, 1] <- "MCMCglmm"

df_cor[3, -1] <- c(posterior.mode(mcmc_cor_fe), HPDinterval(mcmc_cor_fe))

rownames(df_cor) <- NULL

ggplot(df_cor, aes(x = Method, y = Correlation)) +

geom_point() +

geom_linerange(aes(ymin = low, ymax = high)) +

614



20.2. Practical

ylim(-1, 1) +

geom_hline(yintercept = 0, linetype = 2) +

theme_classic()

−1.0

−0.5

0.0

0.5

1.0

ASReml BLUPs MCMCglmm
Method

C
or

re
la

tio
n

Figure 20.14.: Correlation estimates (with CI) using 3 different methods

Table 20.7.: Correlation (with 95% intervals) between flying speed and exploration estimated with 3 different methods

Method Correlation low high

ASReml 0.270 -0.042 0.583

BLUPs 0.342 0.132 0.522

MCMCglmm 0.223 -0.070 0.531

615



Chapter 20. Multivariate mixed models

20.2.5. Happy multivariate models

Figure 20.15.: A female blue dragon of the West

616



Part VI.

Generalized additive models

617



Part VII.

Multivariate analysis

618



Part VIII.

Bayesian approach

619



Chapter 21
Beyond P < 0.05

cite a bunch a must read paper on the subject and maybe summarize the big point of Do and Don’t

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Probability alternative hypothesis is true

P
ro

ba
bi

lit
ity

 o
f f

al
se

 r
es

ul
ts

result

negative

positive

Figure 21.1.: Reflection on the meaning of probabilities in biology

620



Chapter 22
Introduction to Bayesian Inference

22.1. Lecture

Amazing beasties and crazy animals

Figure 22.1.: Dream pet dragon

need to add stuff here

22.1.1. Bayes’ theorem

First, let’s review the theorem. Mathematically, it says how to convert one conditional probability into another one.

𝑃(𝐵 ∣ 𝐴) = 𝑃(𝐴 ∣ 𝐵) ∗ 𝑃(𝐵)
𝑃(𝐴)

621



Chapter 22. Introduction to Bayesian Inference

The formula becomes more interesting in the context of statistical modeling. We have some model that describes a

data-generating process and we have some observed data, but we want to estimate some unknown model parameters.

In that case, the formula reads like:

𝑃(hypothesis ∣ data) = 𝑃(data ∣ hypothesis) ∗ 𝑃 (hypothesis)
𝑃 (data)

These terms have conventional names:

posterior = likelihood ∗ prior
evidence

Prior and posterior describe when information is obtained: what we know pre-data is our prior information, and

what we learn post-data is the updated information (“posterior”).

The likelihood in the equation says how likely the data is given the model parameters. I think of it as fit: How well

do the parameters fit the data? Classical regression’s line of best fit is the maximum likelihood line. The likelihood

also encompasses the data-generating process behind the model. For example, if we assume that the observed data is

normally distributed, then we evaluate the likelihood by using the normal probability density function. You don’t

need to know what that last sentence means. What’s important is that the likelihood contains our built-in assumptions

about how the data is distributed.

The evidence (sometimes called average likelihood) is hareder to grasp. I am not sure how to describe it in an intuitive

way. It’s there to make sure the math works out so that the posterior probabilities sum to 1. Some presentations

of Bayes’ theorem gloss over it and I am not the exception . The important thing to note is that the posterior is

proportional to the likelihood and prior information.

posterior information ∝ likelihood of data ∗ prior information

So simply put, you update your prior information in proportion to how well it fits the observed data. So

essentially you are doing that on a daily basis for everything except when you ar doing frequentist stats .

622



22.1. Lecture

Figure 22.2.: Bayesian Triptych

Exclamation-Triangle Warning

A word of encouragement! The prior is an intimidating part of Bayesian statistics. It seems highly subjective,

as though we are pulling numbers from thin air, and it can be overwhelming for complex models. But if we are

familiar with the kind of data we are modeling, we have prior information. We can have the model simulate

new observations using the prior distribution and then plot the hypothetical data. Does anything look wrong or

implausible about the simulated data? If so, then we have some prior information that we can include in our

model. Note that we do not evaluate the plausibility of the simulated data based on the data we have in hand

(the data we want to model); that’s not

22.1.2. Intro to MCMC

We will now walk through a simple example coded in R to illustrate how an MCMC algorithm works.

Suppose you are interested in the mean heart rate is of students when asked a question in a stat course. You are not

sure what the exact mean value is, but you know the values are normally distributed with a standard deviation of 15.

You have observed 5 individuals to have heart rate of 104, 120,160,90,130. You could use MCMC sampling to

draw samples from the target distribution. We need to specify:

1. the starting value for the chain.

2. the length of the chain. In general, more iterations will give you more accurate output.

623



Chapter 22. Introduction to Bayesian Inference

library(coda)

library(bayesplot)

This is bayesplot version 1.11.1

- Online documentation and vignettes at mc-stan.org/bayesplot

- bayesplot theme set to bayesplot::theme_default()

* Does _not_ affect other ggplot2 plots

* See ?bayesplot_theme_set for details on theme setting

set.seed(170)

hr_obs <- c(104, 112, 132, 115, 110)

start_value <- 250

n_iter <- 2500 # define number of iterations

pd_mean <- numeric(n_iter) # create vector for sample values

pd_mean[1] <- start_value # define starting value

for (i in 2:n_iter) {

proposal <- pd_mean[i - 1] + MASS::mvrnorm(1, 0, 5) # proposal

lprop <- sum(dnorm(proposal, hr_obs, 15)) # likelihood of proposed parameter

lprev <- sum(dnorm(pd_mean[i - 1], hr_obs, 15))

if (lprop / lprev > runif(1)) { # if likelihood of prosposed > likehood previous accept

# and if likelihood is lower accept with random noise

pd_mean[i] <- proposal

} # if true sample the proposal

else {

(pd_mean[i] <- pd_mean[i - 1])

624



22.1. Lecture

} # if false sample the current value

}

pd_mean <- as.mcmc(data.frame(mean = pd_mean))

mcmc_combo(pd_mean, combo = c("trace", "dens"))

50

100

150

200

250

0 5001000150020002500

m
ea

n Chain

1

0.000

0.005

0.010

0.015

0.020

100 150 200 250
mean

summary(pd_mean)

Iterations = 1:2500

Thinning interval = 1

Number of chains = 1

Sample size per chain = 2500

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

125.8105 32.8672 0.6573 13.3046

2. Quantiles for each variable:

625



Chapter 22. Introduction to Bayesian Inference

2.5% 25% 50% 75% 97.5%

75.53 108.03 122.19 136.12 225.46

set.seed(170)

hr_obs <- c(104, 112, 132, 115, 110)

n_iter <- 2500 # define number of iterations

n_chain <- 3

start_value <- c(250, 100, 50)

pd_mean <- array(NA, dim = c(n_iter, n_chain, 1), dimnames = list(iter = NULL, chain = NULL, params = "beta")) # create vector for sample values

for (j in seq_len(n_chain)) {

pd_mean[1, j, 1] <- start_value[j] # define starting value

for (i in 2:n_iter) {

proposal <- pd_mean[i - 1, j, 1] + MASS::mvrnorm(1, 0, 5) # proposal

if (sum(dnorm(proposal, hr_obs, 15)) # likelihood of proposed parameter

/ sum(dnorm(pd_mean[i - 1, j, 1], hr_obs, 15)) > runif(1, 0, 1)) {

pd_mean[i, j, 1] <- proposal

} # if true sample the proposal

else {

(pd_mean[i, j, 1] <- pd_mean[i - 1, j, 1])

} # if false sample the current value

}

}

color_scheme_set("mix-blue-red")

mcmc_combo(pd_mean, combo = c("trace", "dens_overlay"))

626



22.1. Lecture

50

100

150

200

250

0 5001000150020002500

be
ta

Chain

1
2
3

0.00

0.01

0.02

0.03

50 100 150 200 250
beta

Chain

1
2
3

summary(pd_mean)

Min. 1st Qu. Median Mean 3rd Qu. Max.

41.65 99.32 109.68 112.71 122.52 250.00

mcmc_combo(pd_mean, combo = c("trace", "dens_overlay"), n_warmup = 500)

50

100

150

200

250

0 5001000150020002500

be
ta

Chain

1
2
3

0.00

0.01

0.02

0.03

50 100 150 200 250
beta

Chain

1
2
3

627



Chapter 22. Introduction to Bayesian Inference

pd_burn <- pd_mean[-c(1:500), , , drop = FALSE]

summary(pd_burn)

Min. 1st Qu. Median Mean 3rd Qu. Max.

51.98 100.71 110.38 111.42 122.69 163.58

mcmc_combo(pd_burn, combo = c("trace", "dens_overlay"), iter1 = 501)

50

75

100

125

150

500 1000150020002500

be
ta

Chain

1
2
3

0.00

0.01

0.02

0.03

60 80 100 120 140 160
beta

Chain

1
2
3

22.1.3. Inferences

22.1.3.1. Fixed effects

Easy peazy lemon squeezy just have a look at the posteriro distribution, does it overlap 0 yes or no.

talk about mean, median and mode of a distribution as well as credible intervals

22.1.3.2. Random effects

Quite a bit more harder. because constrained to be positive

• Interpreting posterior distribution

• DIC

628



22.2. Practical

• WAIC

22.2. Practical

In this practical, we will revisit our analysis on unicorn aggressivity. Honestly, we can use any other data with

repeated measures for this exercise but I just love unicorns  . However, instead of fittng the model using lmer()

from the lmerTest (Kuznetsova et al. 2017), we will refit the model using 2 excellent softwares fitting models

with a Bayesian approach: MCMCglmm (Hadfield 2010) and brms (Bürkner 2021).

22.2.1. R packages needed

First we load required libraries

library(lmerTest)

library(tidyverse)

library(rptR)

library(brms)

library(MCMCglmm)

library(bayesplot)

22.2.2. A refresher on unicorn ecology

The last model on unicorns was:

aggression ~ opp_size + scale(body_size, center = TRUE, scale = TRUE)

+ scale(assay_rep, scale = FALSE) + block

+ (1 | ID)

Those scaled terms are abit a sore for my eyes and way too long if we need to type them multiple times in this

practical. So first let’s recode them. -

unicorns <- read.csv("data/unicorns_aggression.csv")

unicorns <- unicorns %>%

mutate(

629



Chapter 22. Introduction to Bayesian Inference

body_size_sc = scale(body_size),

assay_rep_sc = scale(assay_rep, scale = FALSE)

)

Ok now we can fit the same model by just using:

aggression ~ opp_size + body_size_sc + assay_rep_sc + block

+ (1 | ID)

We can now fit a model using lmer(). Since we want to compare a bit REML and Bayesian aproaches, I am going

to wrap the model function in a function called system.time(). This function simply estimate the user and

computer time use by the function.

mer_time <- system.time(

m_mer <- lmer(

aggression ~ opp_size + body_size_sc + assay_rep_sc + block

+ (1 | ID),

data = unicorns

)

)

mer_time

user system elapsed

0.064 0.000 0.064

summary(m_mer)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula: aggression ~ opp_size + body_size_sc + assay_rep_sc + block +

(1 | ID)

Data: unicorns

REML criterion at convergence: 1136.5

630



22.2. Practical

Scaled residuals:

Min 1Q Median 3Q Max

-2.85473 -0.62831 0.02545 0.68998 2.74064

Random effects:

Groups Name Variance Std.Dev.

ID (Intercept) 0.02538 0.1593

Residual 0.58048 0.7619

Number of obs: 480, groups: ID, 80

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 9.00181 0.03907 78.07315 230.395 <2e-16 ***

opp_size 1.05141 0.04281 396.99857 24.562 <2e-16 ***

body_size_sc 0.03310 0.03896 84.21144 0.850 0.398

assay_rep_sc -0.05783 0.04281 396.99857 -1.351 0.177

block -0.02166 0.06955 397.00209 -0.311 0.756

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) opp_sz bdy_s_ assy__

opp_size 0.000

body_siz_sc 0.000 0.000

assay_rp_sc 0.000 -0.100 0.000

block 0.000 0.000 0.002 0.000

Ok so it took no time at all to do it and we got our “classic” results.

22.2.3. MCMCglmm

What makes MCMCglmm so useful and powerful in ecology and for practical Bayesian people is that:

631



Chapter 22. Introduction to Bayesian Inference

1. it is blazing fast (for Bayesian analysis) for some models particularly models with structured covariances

2. it is fairly intuitive to code

but it also has some inconvenients:

1. it is blazing fast for Bayesian analysis meaning it is compared to maximum likelihood approaches

2. it has some limitations in terms of functionality, distribution availability and model specifications compared to

other Bayesian softwares

3. the priors, oh, the priors , are a bit tricky to code and understand .

22.2.3.1. Fitting the Model

So here is how we can code the model in MCMCglmm(). It is fairly similar to lmer() except that the random effects

are specified in a different argument.

mcglm_time <- system.time(

m_mcmcglmm <- MCMCglmm(

aggression ~ opp_size + body_size_sc + assay_rep_sc + block,

random = ~ID,

data = unicorns

)

)

MCMC iteration = 0

MCMC iteration = 1000

MCMC iteration = 2000

MCMC iteration = 3000

MCMC iteration = 4000

MCMC iteration = 5000

632



22.2. Practical

MCMC iteration = 6000

MCMC iteration = 7000

MCMC iteration = 8000

MCMC iteration = 9000

MCMC iteration = 10000

MCMC iteration = 11000

MCMC iteration = 12000

MCMC iteration = 13000

summary(m_mcmcglmm)

Iterations = 3001:12991

Thinning interval = 10

Sample size = 1000

DIC: 1128.004

G-structure: ~ID

post.mean l-95% CI u-95% CI eff.samp

ID 0.003686 9.807e-14 0.0262 45.81

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp

633



Chapter 22. Introduction to Bayesian Inference

units 0.6044 0.5228 0.6819 1000

Location effects: aggression ~ opp_size + body_size_sc + assay_rep_sc + block

post.mean l-95% CI u-95% CI eff.samp pMCMC

(Intercept) 9.00152 8.93150 9.07158 1000 <0.001 ***

opp_size 1.04940 0.96813 1.12946 1000 <0.001 ***

body_size_sc 0.03154 -0.03985 0.09563 1000 0.410

assay_rep_sc -0.05620 -0.13196 0.03546 893 0.184

block -0.02069 -0.16186 0.11553 1000 0.774

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

mcglm_time

user system elapsed

1.237 0.000 1.237

Model is slow and not good. We need more iteration and maybe even a longer burnin, and honestly maybe better

priors.

We can still take the time to have a look at the R object output from MCMCglmm(). The 2 main parts we are interrested

in are:

• Sol which stand for the model solution and includes the posteriro distribution of the fixed effects

• VCV, for the variance covariance estimates, which includes the posterior distribution of all (co)variances

estimates for both random effects and residual variance.

omar <- par()

par(mar = c(4, 2, 1.5, 2))

plot(m_mcmcglmm$Sol)

634



22.2. Practical

4000 6000 8000 10000 12000
8.

90
9.

10

Iterations

Trace of (Intercept)

8.90 8.95 9.00 9.05 9.10 9.15

0
6

Density of (Intercept)

N = 1000   Bandwidth = 0.009509

4000 6000 8000 10000 12000

0.
90

1.
10

Iterations

Trace of opp_size

0.90 0.95 1.00 1.05 1.10 1.15 1.20

0
4

8

Density of opp_size

N = 1000   Bandwidth = 0.01141

4000 6000 8000 10000 12000

−
0.

05
0.

15

Iterations

Trace of body_size_sc

−0.10 0.00 0.05 0.10 0.15

0
4

8

Density of body_size_sc

N = 1000   Bandwidth = 0.009511

Figure 22.3.: Posterior trace and distribution of the parameters in m_mcmcglmm using default settings

4000 6000 8000 10000 12000

−
0.

20
0.

05

Iterations

Trace of assay_rep_sc

−0.25 −0.15 −0.05 0.05

0
4

8

Density of assay_rep_sc

N = 1000   Bandwidth = 0.01133

4000 6000 8000 10000 12000

−
0.

2
0.

2

Iterations

Trace of block

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
3

Density of block

N = 1000   Bandwidth = 0.01911

Figure 22.4.: Posterior trace and distribution of the parameters in m_mcmcglmm using default settings

plot(m_mcmcglmm$VCV)

635



Chapter 22. Introduction to Bayesian Inference

4000 8000 12000

0.
00

0.
04

Iterations

Trace of ID

0.00 0.02 0.04 0.06

0
60

0

Density of ID

N = 1000   Bandwidth = 0.0003449

4000 8000 12000

0.
50

0.
65

Iterations

Trace of units

0.45 0.55 0.65 0.75

0
4

8

Density of units

N = 1000   Bandwidth = 0.01084

Figure 22.5.: Posterior trace and distribution of the parameters in m_mcmcglmm using default settings

par(omar)

autocorr.diag(m_mcmcglmm$VCV)

ID units

Lag 0 1.0000000 1.00000000

Lag 10 0.8042405 -0.02074155

Lag 50 0.4807583 -0.04264317

Lag 100 0.1951356 0.04422296

Lag 500 0.1254589 0.04401956

Talk about autocorrelation, mixing, convergence and priors here

n_samp <- 1000

thin <- 500

burnin <- 20000

mcglm_time <- system.time(

m_mcmcglmm <- MCMCglmm(

aggression ~ opp_size + body_size_sc + assay_rep_sc + block,

random = ~ID,

636



22.2. Practical

data = unicorns,

nitt = n_samp * thin + burnin, thin = thin, burnin = burnin,

verbose = FALSE,

prior = list(

R = list(V = 1, nu = 0.002),

G = list(

G1 = list(V = 1, nu = 0.002)

)

)

)

)

summary(m_mcmcglmm)

Iterations = 20001:519501

Thinning interval = 500

Sample size = 1000

DIC: 1126.66

G-structure: ~ID

post.mean l-95% CI u-95% CI eff.samp

ID 0.01987 0.0002904 0.05458 1000

R-structure: ~units

post.mean l-95% CI u-95% CI eff.samp

units 0.5917 0.5188 0.6763 1000

Location effects: aggression ~ opp_size + body_size_sc + assay_rep_sc + block

post.mean l-95% CI u-95% CI eff.samp pMCMC

637



Chapter 22. Introduction to Bayesian Inference

(Intercept) 9.00136 8.92221 9.07383 1000 <0.001 ***

opp_size 1.05363 0.96382 1.13650 1000 <0.001 ***

body_size_sc 0.03373 -0.03781 0.10686 1000 0.396

assay_rep_sc -0.05861 -0.14186 0.02882 1000 0.182

block -0.02709 -0.16061 0.11441 1000 0.698

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

mcglm_time

user system elapsed

50.678 0.000 50.717

evaluate model here

omar <- par()

par(mar = c(4, 2, 1.5, 2))

plot(m_mcmcglmm$Sol)

1e+05 2e+05 3e+05 4e+05 5e+05

8.
90

9.
10

Iterations

Trace of (Intercept)

8.85 8.90 8.95 9.00 9.05 9.10 9.15

0
4

8

Density of (Intercept)

N = 1000   Bandwidth = 0.01037

1e+05 2e+05 3e+05 4e+05 5e+05

0.
95

Iterations

Trace of opp_size

0.90 1.00 1.10 1.20

0
4

8

Density of opp_size

N = 1000   Bandwidth = 0.01155

1e+05 2e+05 3e+05 4e+05 5e+05

−
0.

10
0.

15

Iterations

Trace of body_size_sc

−0.10 0.00 0.05 0.10 0.15 0.20

0
4

8

Density of body_size_sc

N = 1000   Bandwidth = 0.01025

Figure 22.6.: Posterior trace and distribution of the paremeters in m_mcmcglmm with better settings

638



22.2. Practical

1e+05 2e+05 3e+05 4e+05 5e+05
−

0.
20

0.
10

Iterations

Trace of assay_rep_sc

−0.2 −0.1 0.0 0.1

0
4

8

Density of assay_rep_sc

N = 1000   Bandwidth = 0.01177

1e+05 2e+05 3e+05 4e+05 5e+05

−
0.

2
0.

1

Iterations

Trace of block

−0.3 −0.2 −0.1 0.0 0.1 0.2

0
3

Density of block

N = 1000   Bandwidth = 0.01904

Figure 22.7.: Posterior trace and distribution of the paremeters in m_mcmcglmm with better settings

plot(m_mcmcglmm$VCV)

1e+05 3e+05 5e+05

0.
00

0.
06

Iterations

Trace of ID

0.00 0.04 0.08

0
20

40

Density of ID

N = 1000   Bandwidth = 0.004417

1e+05 3e+05 5e+05

0.
50

0.
65

Iterations

Trace of units

0.45 0.55 0.65 0.75

0
4

8

Density of units

N = 1000   Bandwidth = 0.01082

Figure 22.8.: Posterior trace and distribution of the paremeters in m_mcmcglmm with better settings

639



Chapter 22. Introduction to Bayesian Inference

par(omar)

autocorr.diag(m_mcmcglmm$VCV)

ID units

Lag 0 1.000000000 1.000000000

Lag 500 0.013876043 -0.044235206

Lag 2500 0.026120260 -0.048012241

Lag 5000 -0.049357725 0.021158672

Lag 25000 0.002544256 -0.003722595

22.2.4. Inferences

22.2.4.1. Fixed effects

Easy peazy lemon squeezy just have a look at the posterior distribution, does it overlap 0 yes or no.

posterior.mode(m_mcmcglmm$Sol)

(Intercept) opp_size body_size_sc assay_rep_sc block

9.00632282 1.07353252 0.03500916 -0.04048582 -0.03276275

HPDinterval(m_mcmcglmm$Sol)

lower upper

(Intercept) 8.92221005 9.07383400

opp_size 0.96382086 1.13649873

body_size_sc -0.03781276 0.10685606

assay_rep_sc -0.14185602 0.02882443

block -0.16060691 0.11440706

attr(,"Probability")

[1] 0.95

640



22.2. Practical

22.2.4.2. Random effects

Quite a bit more harder. because constrained to be positive

posterior.mode(m_mcmcglmm$VCV)

ID units

0.00096263 0.59129362

HPDinterval(m_mcmcglmm$VCV)

lower upper

ID 0.0002903938 0.05458376

units 0.5188238599 0.67634529

attr(,"Probability")

[1] 0.95

22.2.5. brms

brms is an acronym for Bayesian Regression Models using ‘Stan’ (Bürkner 2021). It is a package developed to fit

regression models with a Bayesian approach using the amazing stan software (Stan Development Team 2021).

What makes brms so useful and powerful in ecology is that:

1. it is really intuitive to code (same syntax as glmer())

2. it is incredibly flexible since it is essentially a front end for stan via its rstan interface (Stan Development

Team 2024)

but with great powers come great responsability  

brm_time <- system.time(

m_brm <- brm(

aggression ~ opp_size + body_size_sc + assay_rep_sc + block

+ (1 | ID),

data = unicorns, iter = 4750, warmup = 1000, thin = 15, cores = 4

# refresh = 0

641



Chapter 22. Introduction to Bayesian Inference

)

)

Compiling Stan program...

Start sampling

brm_time

user system elapsed

90.998 4.822 81.741

summary(m_brm)

Family: gaussian

Links: mu = identity; sigma = identity

Formula: aggression ~ opp_size + body_size_sc + assay_rep_sc + block + (1 | ID)

Data: unicorns (Number of observations: 480)

Draws: 4 chains, each with iter = 4750; warmup = 1000; thin = 15;

total post-warmup draws = 1000

Multilevel Hyperparameters:

~ID (Number of levels: 80)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sd(Intercept) 0.14 0.07 0.01 0.27 1.00 1054 1037

Regression Coefficients:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 9.00 0.04 8.92 9.08 1.01 957 936

opp_size 1.05 0.04 0.97 1.14 1.01 954 986

body_size_sc 0.03 0.04 -0.04 0.10 1.01 1038 916

assay_rep_sc -0.06 0.04 -0.15 0.03 1.00 967 1033

block -0.02 0.07 -0.16 0.11 1.00 1073 846

642



22.2. Practical

Further Distributional Parameters:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.77 0.03 0.72 0.82 1.00 982 949

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS

and Tail_ESS are effective sample size measures, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

mcmc_acf_bar(m_brm, regex_pars = c("sd"))

sd_ID__Intercept

1
2

3
4

0 5 10 15 20

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

0.0
0.5
1.0

Lag

A
ut

oc
or

re
la

tio
n

Figure 22.9.: Autocorrelation in the chain for variance parameters in model m_brm

22.2.5.1. Hunder the hood

have a look at the stan code

stancode(m_brm)

// generated with brms 2.21.0

functions {

}

643



Chapter 22. Introduction to Bayesian Inference

data {

int<lower=1> N; // total number of observations

vector[N] Y; // response variable

int<lower=1> K; // number of population-level effects

matrix[N, K] X; // population-level design matrix

int<lower=1> Kc; // number of population-level effects after centering

// data for group-level effects of ID 1

int<lower=1> N_1; // number of grouping levels

int<lower=1> M_1; // number of coefficients per level

array[N] int<lower=1> J_1; // grouping indicator per observation

// group-level predictor values

vector[N] Z_1_1;

int prior_only; // should the likelihood be ignored?

}

transformed data {

matrix[N, Kc] Xc; // centered version of X without an intercept

vector[Kc] means_X; // column means of X before centering

for (i in 2:K) {

means_X[i - 1] = mean(X[, i]);

Xc[, i - 1] = X[, i] - means_X[i - 1];

}

}

parameters {

vector[Kc] b; // regression coefficients

real Intercept; // temporary intercept for centered predictors

real<lower=0> sigma; // dispersion parameter

vector<lower=0>[M_1] sd_1; // group-level standard deviations

array[M_1] vector[N_1] z_1; // standardized group-level effects

}

transformed parameters {

vector[N_1] r_1_1; // actual group-level effects

real lprior = 0; // prior contributions to the log posterior

r_1_1 = (sd_1[1] * (z_1[1]));

644



22.2. Practical

lprior += student_t_lpdf(Intercept | 3, 8.9, 2.5);

lprior += student_t_lpdf(sigma | 3, 0, 2.5)

- 1 * student_t_lccdf(0 | 3, 0, 2.5);

lprior += student_t_lpdf(sd_1 | 3, 0, 2.5)

- 1 * student_t_lccdf(0 | 3, 0, 2.5);

}

model {

// likelihood including constants

if (!prior_only) {

// initialize linear predictor term

vector[N] mu = rep_vector(0.0, N);

mu += Intercept;

for (n in 1:N) {

// add more terms to the linear predictor

mu[n] += r_1_1[J_1[n]] * Z_1_1[n];

}

target += normal_id_glm_lpdf(Y | Xc, mu, b, sigma);

}

// priors including constants

target += lprior;

target += std_normal_lpdf(z_1[1]);

}

generated quantities {

// actual population-level intercept

real b_Intercept = Intercept - dot_product(means_X, b);

}

22.2.5.2. using shiny

launch_shinystan(m_brm)

645



Chapter 22. Introduction to Bayesian Inference

Figure 22.10.: Shinystan interface

22.2.6. Inferences

22.2.6.1. Fixed effects

summary(m_brm)

Family: gaussian

Links: mu = identity; sigma = identity

Formula: aggression ~ opp_size + body_size_sc + assay_rep_sc + block + (1 | ID)

Data: unicorns (Number of observations: 480)

Draws: 4 chains, each with iter = 4750; warmup = 1000; thin = 15;

total post-warmup draws = 1000

Multilevel Hyperparameters:

~ID (Number of levels: 80)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sd(Intercept) 0.14 0.07 0.01 0.27 1.00 1054 1037

Regression Coefficients:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 9.00 0.04 8.92 9.08 1.01 957 936

646



22.2. Practical

opp_size 1.05 0.04 0.97 1.14 1.01 954 986

body_size_sc 0.03 0.04 -0.04 0.10 1.01 1038 916

assay_rep_sc -0.06 0.04 -0.15 0.03 1.00 967 1033

block -0.02 0.07 -0.16 0.11 1.00 1073 846

Further Distributional Parameters:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.77 0.03 0.72 0.82 1.00 982 949

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS

and Tail_ESS are effective sample size measures, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

mcmc_plot(m_brm, regex_pars = "b_")

b_block

b_assay_rep_sc

b_body_size_sc

b_opp_size

b_Intercept

0.0 2.5 5.0 7.5 10.0

Figure 22.11.: Fixed effect estimates (with 95% credible intervals) from model m_brm

22.2.6.2. Random effects

647



Chapter 22. Introduction to Bayesian Inference

summary(m_brm)

Family: gaussian

Links: mu = identity; sigma = identity

Formula: aggression ~ opp_size + body_size_sc + assay_rep_sc + block + (1 | ID)

Data: unicorns (Number of observations: 480)

Draws: 4 chains, each with iter = 4750; warmup = 1000; thin = 15;

total post-warmup draws = 1000

Multilevel Hyperparameters:

~ID (Number of levels: 80)

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sd(Intercept) 0.14 0.07 0.01 0.27 1.00 1054 1037

Regression Coefficients:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

Intercept 9.00 0.04 8.92 9.08 1.01 957 936

opp_size 1.05 0.04 0.97 1.14 1.01 954 986

body_size_sc 0.03 0.04 -0.04 0.10 1.01 1038 916

assay_rep_sc -0.06 0.04 -0.15 0.03 1.00 967 1033

block -0.02 0.07 -0.16 0.11 1.00 1073 846

Further Distributional Parameters:

Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS

sigma 0.77 0.03 0.72 0.82 1.00 982 949

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS

and Tail_ESS are effective sample size measures, and Rhat is the potential

scale reduction factor on split chains (at convergence, Rhat = 1).

mcmc_plot(m_brm, pars = c("sd_ID__Intercept", "sigma"))

Warning: Argument 'pars' is deprecated. Please use 'variable' instead.

648



22.2. Practical

sigma

sd_ID__Intercept

0.0 0.2 0.4 0.6 0.8

Figure 22.12.: Among-individual and residual standard deviance ( with 95% credible intervals) estimated from model
m_brm

649



Chapter 22. Introduction to Bayesian Inference

22.2.7. Happy Bayesian stats

Figure 22.13.: Sherlock Holmes, a truly bayesian detective

650



References

R packages

This book was produced all packages (excluding dependencies) listed in table Table 22.1. As recommended by the

‘tidyverse’ team, all citations to tidyverse packages are collapsed into a single citation.

Table 22.1.: R packages used in this book

Package Version Citation

asreml 4.2.0.302 The VSNi Team (2023)

babeldown 0.0.0.9000 Salmon (2024)

base 4.4.1 R Core Team (2024)

bayesplot 1.11.1 Gabry et al. (2019); Gabry and Mahr (2024)

boot 1.3.31 A. C. Davison and D. V. Hinkley (1997); Angelo Canty and B. D. Ripley

(2024)

brio 1.1.5 Hester and Csárdi (2024)

brms 2.21.0 Bürkner (2017); Bürkner (2018); Bürkner (2021)

broom.mixed 0.2.9.5 Bolker and Robinson (2024)

car 3.1.2 Fox and Weisberg (2019a)

coda 0.19.4.1 Plummer et al. (2006)

DHARMa 0.4.6 Hartig (2022)

digest 0.6.37 Eddelbuettel (2024)

effects 4.2.2 Fox (2003); Fox and Hong (2009); Fox and Weisberg (2018); Fox and

Weisberg (2019b)

emoji 15.0 Hvitfeldt (2022)

factoextra 1.0.7 Kassambara and Mundt (2020)

FactoMineR 2.11 Lê et al. (2008)

651



References

Table 22.1.: R packages used in this book

Package Version Citation

GGally 2.2.1 Schloerke et al. (2024)

ggcleveland 0.1.0 Prunello and Mari (2021)

ggfortify 0.4.17 Tang et al. (2016); Horikoshi and Tang (2018)

ggpubr 0.6.0 Kassambara (2023)

grateful 0.2.10 Rodriguez-Sanchez and Jackson (2023)

gt 0.11.0 Iannone et al. (2024)

hexbin 1.28.4 Carr et al. (2024)

kableExtra 1.4.0 Zhu (2024)

knitr 1.48 Xie (2014); Xie (2015); Xie (2024)

lattice 0.22.6 Sarkar (2008)

lme4 1.1.35.5 Bates et al. (2015)

lmerTest 3.1.3 Kuznetsova et al. (2017)

lmPerm 2.1.0 Wheeler and Torchiano (2016)

lmtest 0.9.40 Zeileis and Hothorn (2002)

MASS 7.3.61 Venables and Ripley (2002)

MCMCglmm 2.36 Hadfield (2010)

memoise 2.0.1 Wickham et al. (2021)

multcomp 1.4.26 Hothorn et al. (2008)

MuMIn 1.48.4 Bartoń (2024)

mvtnorm 1.3.1 Genz and Bretz (2009)

nadiv 2.18.0 Wolak (2012)

palmerpenguins 0.1.1 Horst et al. (2020)

patchwork 1.2.0 Pedersen (2024)

performance 0.12.3 Lüdecke et al. (2021)

pwr 1.3.0 Champely (2020)

quantreg 5.98 Koenker (2024)

reshape2 1.4.4 Wickham (2007)

rmarkdown 2.28 Xie et al. (2018); Xie et al. (2020); Allaire et al. (2024)

rptR 0.9.22 Stoffel et al. (2017)

shiny 1.9.1 Chang et al. (2024)

652



Bibliography

Table 22.1.: R packages used in this book

Package Version Citation

simpleboot 1.1.8 Peng (2024)

tidyverse 2.0.0 Wickham et al. (2019)

tinkr 0.2.0.9000 Salmon et al. (2024)

vcd 1.4.13 Meyer et al. (2006); Zeileis et al. (2007); Meyer et al. (2024)

vcdExtra 0.8.5 Friendly (2023)

vioplot 0.5.0 Adler et al. (2024)

withr 3.0.1 Hester et al. (2024)

yaml 2.3.10 Garbett et al. (2024)

Bibliography

A. C. Davison, and D. V. Hinkley. 1997. Bootstrap methods and their applications. Cambridge University Press,

Cambridge.

Adler, D., S. T. Kelly, T. Elliott, and J. Adamson. 2024. vioplot: Violin plot.

Allaire, J., Y. Xie, C. Dervieux, J. McPherson, J. Luraschi, K. Ushey, A. Atkins, H. Wickham, J. Cheng, W. Chang,

and R. Iannone. 2024. rmarkdown: Dynamic documents for r.

Angelo Canty, and B. D. Ripley. 2024. boot: Bootstrap r (s-plus) functions.

Banta, J. A., M. H. H. Stevens, and M. Pigliucci. 2010. A comprehensive test of the “limiting resources” framework

applied to plant tolerance to apical meristem damage. Oikos 119:359–369.

Bartoń, K. 2024. MuMIn: Multi-model inference.

Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of

Statistical Software 67:1–48.

Bolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, and J.-S. S. White. 2009.

Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology and Evolution

24:127–135.

Bolker, B., and D. Robinson. 2024. broom.mixed: Tidying methods for mixed models.

Bürkner, P.-C. 2017. brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software

80:1–28.

Bürkner, P.-C. 2018. Advanced Bayesian multilevel modeling with the R package brms. The R Journal 10:395–411.

653

https://doi:10.1017/CBO9780511802843
https://github.com/TomKellyGenetics/vioplot
https://github.com/rstudio/rmarkdown
https://doi.org/10.1111/j.1600-0706.2009.17726.x
https://doi.org/10.1111/j.1600-0706.2009.17726.x
https://CRAN.R-project.org/package=MuMIn
https://doi.org/10.18637/jss.v067.i01
https://CRAN.R-project.org/package=broom.mixed
https://doi.org/10.18637/jss.v080.i01
https://doi.org/10.32614/RJ-2018-017


References

Bürkner, P.-C. 2021. Bayesian item response modeling in R with brms and Stan. Journal of Statistical Software

100:1–54.

Carr, D., ported by Nicholas Lewin-Koh, M. Maechler, and contains copies of lattice functions written by Deepayan

Sarkar. 2024. hexbin: Hexagonal binning routines.

Champely, S. 2020. pwr: Basic functions for power analysis.

Chang, W., J. Cheng, J. Allaire, C. Sievert, B. Schloerke, Y. Xie, J. Allen, J. McPherson, A. Dipert, and B. Borges.

2024. shiny: Web application framework for r.

Douglas, A. 2023. An introduction to r.

Eddelbuettel, D. 2024. digest: Create compact hash digests of r objects.

Elston, D. A., R. Moss, T. Boulinier, C. Arrowsmith, and X. Lambin. 2001. Analysis of aggregation, a worked

example: Numbers of ticks on red grouse chicks. Parasitology 122:563–569.

Fox, J. 2003. Effect displays in R for generalised linear models. Journal of Statistical Software 8:1–27.

Fox, J., and J. Hong. 2009. Effect displays in R for multinomial and proportional-odds logit models: Extensions to

the effects package. Journal of Statistical Software 32:1–24.

Fox, J., and S. Weisberg. 2018. Visualizing fit and lack of fit in complex regression models with predictor effect

plots and partial residuals. Journal of Statistical Software 87:1–27.

Fox, J., and S. Weisberg. 2019a. An R companion to applied regression. Third. Sage, Thousand Oaks CA.

Fox, J., and S. Weisberg. 2019b. An r companion to applied regression. 3rd edition. Sage, Thousand Oaks CA.

Friendly, M. 2023. vcdExtra: “vcd” extensions and additions.

Gabry, J., and T. Mahr. 2024. bayesplot: Plotting for bayesian models.

Gabry, J., D. Simpson, A. Vehtari, M. Betancourt, and A. Gelman. 2019. Visualization in bayesian workflow. J. R.

Stat. Soc. A 182:389–402.

Garbett, S. P., J. Stephens, K. Simonov, Y. Xie, Z. Dong, H. Wickham, J. Horner, reikoch, W. Beasley, B. O’Connor,

G. R. Warnes, M. Quinn, Z. N. Kamvar, and C. Gao. 2024. yaml: Methods to convert r data to YAML and back.

Genz, A., and F. Bretz. 2009. Computation of multivariate normal and t probabilities. Springer-Verlag, Heidelberg.

Hadfield, J. D. 2010. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R

package. Journal of Statistical Software 33:1–22.

Hadfield, J. D., A. J. Wilson, D. Garant, B. C. Sheldon, and L. E. Kruuk. 2010. The Misuse of BLUP in Ecology

and Evolution. American Naturalist 175:116–125.

Hartig, F. 2022. DHARMa: Residual diagnostics for hierarchical (multi-level / mixed) regression models.

Hester, J., and G. Csárdi. 2024. brio: Basic r input output.

Hester, J., L. Henry, K. Müller, K. Ushey, H. Wickham, and W. Chang. 2024. withr: Run code “With” temporarily

modified global state.

654

https://doi.org/10.18637/jss.v100.i05
https://CRAN.R-project.org/package=hexbin
https://CRAN.R-project.org/package=pwr
https://CRAN.R-project.org/package=shiny
https://intro2r.com/
https://CRAN.R-project.org/package=digest
https://doi.org/10.18637/jss.v008.i15
https://doi.org/10.18637/jss.v032.i01
https://doi.org/10.18637/jss.v032.i01
https://doi.org/10.18637/jss.v087.i09
https://doi.org/10.18637/jss.v087.i09
https://socialsciences.mcmaster.ca/jfox/Books/Companion/
https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html
https://CRAN.R-project.org/package=vcdExtra
https://mc-stan.org/bayesplot/
https://doi.org/10.1111/rssa.12378
https://CRAN.R-project.org/package=yaml
https://www.jstatsoft.org/v33/i02/
https://www.jstatsoft.org/v33/i02/
https://CRAN.R-project.org/package=DHARMa
https://CRAN.R-project.org/package=brio
https://CRAN.R-project.org/package=withr
https://CRAN.R-project.org/package=withr


Bibliography

Horikoshi, M., and Y. Tang. 2018. ggfortify: Data visualization tools for statistical analysis results.

Horst, A. M., A. P. Hill, and K. B. Gorman. 2020. palmerpenguins: Palmer archipelago (antarctica) penguin data.

Hothorn, T., F. Bretz, and P. Westfall. 2008. Simultaneous inference in general parametric models. Biometrical

Journal 50:346–363.

Houslay, T. M., and A. J. Wilson. 2017. Avoiding the misuse of BLUP in behavioural ecology. Behavioral Ecology

28:948–952.

Hvitfeldt, E. 2022. emoji: Data and function to work with emojis.

Iannone, R., J. Cheng, B. Schloerke, E. Hughes, A. Lauer, J. Seo, K. Brevoort, and O. Roy. 2024. gt: Easily create

presentation-ready display tables.

Kassambara, A. 2023. ggpubr: “ggplot2” based publication ready plots.

Kassambara, A., and F. Mundt. 2020. factoextra: Extract and visualize the results of multivariate data analyses.

Koenker, R. 2024. quantreg: Quantile regression.

Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen. 2017. lmerTest package: Tests in linear mixed effects

models. Journal of Statistical Software 82:1–26.

Lê, S., J. Josse, and F. Husson. 2008. FactoMineR: A package for multivariate analysis. Journal of Statistical

Software 25:1–18.

Lüdecke, D., M. S. Ben-Shachar, I. Patil, P. Waggoner, and D. Makowski. 2021. performance: An R package for

assessment, comparison and testing of statistical models. Journal of Open Source Software 6:3139.

Martin, J. 1219. Another lasagna recipe from medieval times. Journal of Lasagna 4:1686.

Martin, J. 2200. A silly example. Chapman; Hall/CRC, Boca Raton, Florida.

Meyer, D., A. Zeileis, and K. Hornik. 2006. The strucplot framework: Visualizing multi-way contingency tables

with vcd. Journal of Statistical Software 17:1–48.

Meyer, D., A. Zeileis, K. Hornik, and M. Friendly. 2024. vcd: Visualizing categorical data.

Pedersen, T. L. 2024. patchwork: The composer of plots.

Peng, R. D. 2024. simpleboot: Simple bootstrap routines.

Plummer, M., N. Best, K. Cowles, and K. Vines. 2006. CODA: Convergence diagnosis and output analysis for

MCMC. R News 6:7–11.

Prunello, M., and G. Mari. 2021. ggcleveland: Implementation of plots from cleveland’s visualizing data book.

R Core Team. 2024. R: A language and environment for statistical computing. R Foundation for Statistical Computing,

Vienna, Austria.

Rodriguez-Sanchez, F., and C. P. Jackson. 2023. grateful: Facilitate citation of r packages.

Salmon, M. 2024. babeldown: Helpers for automatic translation of markdown-based content.

Salmon, M., Z. N. Kamvar, and J. Ooms. 2024. tinkr: Cast “(R)Markdown” files to “XML” and back again.

655

https://CRAN.R-project.org/package=ggfortify
https://doi.org/10.5281/zenodo.3960218
https://doi.org/10.1093/beheco/arx023
https://CRAN.R-project.org/package=emoji
https://CRAN.R-project.org/package=gt
https://CRAN.R-project.org/package=gt
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=factoextra
https://CRAN.R-project.org/package=quantreg
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.21105/joss.03139
https://doi.org/10.21105/joss.03139
https://doi.org/10.18637/jss.v017.i03
https://doi.org/10.18637/jss.v017.i03
https://CRAN.R-project.org/package=vcd
https://CRAN.R-project.org/package=patchwork
https://CRAN.R-project.org/package=simpleboot
https://journal.r-project.org/archive/
https://journal.r-project.org/archive/
https://CRAN.R-project.org/package=ggcleveland
https://www.R-project.org/
https://pakillo.github.io/grateful/
https://github.com/ropensci-review-tools/babeldown
https://github.com/ropensci/tinkr


References

Sarkar, D. 2008. Lattice: Multivariate data visualization with r. Springer, New York.

Schloerke, B., D. Cook, J. Larmarange, F. Briatte, M. Marbach, E. Thoen, A. Elberg, and J. Crowley. 2024. GGally:

Extension to “ggplot2”.

Stan Development Team. 2021. Stan modeling language users guide and reference manual, 2.26.

Stan Development Team. 2024. RStan: The R interface to Stan.

Stoffel, M. A., S. Nakagawa, and H. Schielzeth. 2017. rptR: Repeatability estimation and variance decomposition by

generalized linear mixed-effects models. Methods in Ecology and Evolution 8:1639???1644.

Tang, Y., M. Horikoshi, and W. Li. 2016. ggfortify: Unified interface to visualize statistical result of popular r

packages. The R Journal 8:474–485.

The VSNi Team. 2023. asreml: Fits linear mixed models using REML.

Venables, W. N., and B. D. Ripley. 2002. Modern applied statistics with s. Fourth. Springer, New York.

Wheeler, B., and M. Torchiano. 2016. lmPerm: Permutation tests for linear models.

Wickham, H. 2007. Reshaping data with the reshape package. Journal of Statistical Software 21:1–20.

Wickham, H., M. Averick, J. Bryan, W. Chang, L. D. McGowan, R. François, G. Grolemund, A. Hayes, L. Henry,

J. Hester, M. Kuhn, T. L. Pedersen, E. Miller, S. M. Bache, K. Müller, J. Ooms, D. Robinson, D. P. Seidel, V.

Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, and H. Yutani. 2019. Welcome to the tidyverse. Journal of

Open Source Software 4:1686.

Wickham, H., J. Hester, W. Chang, K. Müller, and D. Cook. 2021. memoise: “Memoisation” of functions.

Wilkinson, L. 2005. The Grammar of Graphics. Springer Science & Business Media.

Wolak, M. E. 2012. nadiv: An R package to create relatedness matrices for estimating non-additive genetic variances

in animal models. Methods in Ecology and Evolution 3:792–796.

Xie, Y. 2014. knitr: A comprehensive tool for reproducible research in R. in V. Stodden, F. Leisch, and R. D. Peng,

editors. Implementing reproducible computational research. Chapman; Hall/CRC.

Xie, Y. 2015. Dynamic documents with R and knitr. 2nd edition. Chapman; Hall/CRC, Boca Raton, Florida.

Xie, Y. 2024. knitr: A general-purpose package for dynamic report generation in r.

Xie, Y., J. J. Allaire, and G. Grolemund. 2018. R markdown: The definitive guide. Chapman; Hall/CRC, Boca

Raton, Florida.

Xie, Y., C. Dervieux, and E. Riederer. 2020. R markdown cookbook. Chapman; Hall/CRC, Boca Raton, Florida.

Zeileis, A., and T. Hothorn. 2002. Diagnostic checking in regression relationships. R News 2:7–10.

Zeileis, A., D. Meyer, and K. Hornik. 2007. Residual-based shadings for visualizing (conditional) independence.

Journal of Computational and Graphical Statistics 16:507–525.

Zhu, H. 2024. kableExtra: Construct complex table with “kable” and pipe syntax.

656

http://lmdvr.r-forge.r-project.org
https://CRAN.R-project.org/package=GGally
https://CRAN.R-project.org/package=GGally
https://mc-stan.org
https://mc-stan.org/
https://doi.org/10.1111/2041-210X.12797
https://doi.org/10.1111/2041-210X.12797
https://doi.org/10.32614/RJ-2016-060
https://doi.org/10.32614/RJ-2016-060
https://www.vsni.co.uk
https://www.stats.ox.ac.uk/pub/MASS4/
https://CRAN.R-project.org/package=lmPerm
http://www.jstatsoft.org/v21/i12/
https://doi.org/10.21105/joss.01686
https://CRAN.R-project.org/package=memoise
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.2041-210X.2012.00213.x
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.2041-210X.2012.00213.x
https://yihui.org/knitr/
https://yihui.org/knitr/
https://bookdown.org/yihui/rmarkdown
https://bookdown.org/yihui/rmarkdown-cookbook
https://CRAN.R-project.org/doc/Rnews/
https://doi.org/10.1198/106186007X237856
https://CRAN.R-project.org/package=kableExtra


AppendixA
Data used in this book

A.1. All in one zip file

All the data, code, and r-objects used in the book in a zip file

A.2. All the data files

• age.csv

• anc1dat.csv

• anc3dat.csv

• atmosphere.txt

• Banta_TotalFruits.csv

• Biston_pd_1.csv

• Biston_pd_2.csv

• Biston_student.csv

• Biston.postdoc.csv

• Biston.prof.csv

• Dam10dat.csv

• dragons.csv

• ErablesGatineau.csv

• gala.txt

• hypoxia.uottawa.csv

• JacobsenDangles_1.csv

657

./data/Rway_enfR_data_code.zip
data//age.csv
data//anc1dat.csv
data//anc3dat.csv
data//atmosphere.txt
data//Banta_TotalFruits.csv
data//Biston_pd_1.csv
data//Biston_pd_2.csv
data//Biston_student.csv
data//Biston.postdoc.csv
data//Biston.prof.csv
data//Dam10dat.csv
data//dragons.csv
data//ErablesGatineau.csv
data//gala.txt
data//hypoxia.uottawa.csv
data//JacobsenDangles_1.csv


Appendix A. Data used in this book

• JacobsenDangles_2.csv

• loglin.csv

• mouflon.csv

• Mregdat.csv

• nematodes.csv

• nestdat.csv

• nr2wdat.csv

• pollution.txt

• Rway_enfR_data_code.zip

• salmonella.csv

• simulies.csv

• simuliidae.csv

• skulldat_2020.csv

• skulldat-rm.csv

• smoking.txt

• Stu2mdat.csv

• Stu2wdat.csv

• sturgdat.csv

• sturgeon.csv

• unicorns_aggression.csv

• unicorns.csv

• unicorns.txt

• unicorns.xlsx

• USPopSurvey.csv

• wmc2dat2.csv

• wmcdat2.csv

A.3. R code used in the book and slides

• book-fnc.R

• extra_funs.R

• glmm_simdev.rda

658

data//JacobsenDangles_2.csv
data//loglin.csv
data//mouflon.csv
data//Mregdat.csv
data//nematodes.csv
data//nestdat.csv
data//nr2wdat.csv
data//pollution.txt
data//Rway_enfR_data_code.zip
data//salmonella.csv
data//simulies.csv
data//simuliidae.csv
data//skulldat_2020.csv
data//skulldat-rm.csv
data//smoking.txt
data//Stu2mdat.csv
data//Stu2wdat.csv
data//sturgdat.csv
data//sturgeon.csv
data//unicorns_aggression.csv
data//unicorns.csv
data//unicorns.txt
data//unicorns.xlsx
data//USPopSurvey.csv
data//wmc2dat2.csv
data//wmcdat2.csv
code//book-fnc.R
code//extra_funs.R
code//glmm_simdev.rda


AppendixB
Installing Quarto and LateX

Installing Quarto on your computer is pretty straight forward and should be painless. If you’re getting started with

Quarto we suggest that you use RStudio but of course RStudio is not required and there are other options available.

You will also need to install some additional software if you want to render your Quarto documents to PDF format.

This guide assumes you have already installed R and an IDE (RStudio IDE or VSCode). An IDE is not required but

recommended, because it makes it easier to work with Quarto. If you don’t have RStudio IDE installed, you will

also have to install Pandoc. If you have RStudio installed there is no need to install Pandoc separately because it’s

bundled with RStudio.

Next you need to install Quarto. It is really straightforward, just download and install from the files specific to your

OS (Windows, Mac or linux).

You should also install the quarto package using:

install.packages("quarto", dep = TRUE)

The dep = TRUE argument will also install a bunch of additional R packages on which the quarto depends.

Finally you can install the rmarkdown package but it is not strictly required if using Quarto.

install.packages("rmarkdown", dep = TRUE)

If you want to generate PDF output, you will need to install LATEX. For R Markdown users who have not installed

LATEX before, we recommend that you install TinyTeX. You can install TinyTex from within R using the tinytex

package with the following code:

659

https://www.r-project.org
https://rstudio.com/
https://code.visualstudio.com/
http://pandoc.org
https://quarto.org/docs/get-started/
https://yihui.name/tinytex/


Appendix B. Installing Quarto and LateX

install.packages("tinytex")

tinytex::install_tinytex() # install TinyTeX

TinyTeX is a lightweight, portable, cross-platform, and easy-to-maintain LATEX distribution. The R companion

package tinytex can help you automatically install missing LATEX packages when compiling LATEX or R

Markdown documents to PDF.

B.1. MS Windows

An alternative option would be to install MiKTeX instead. You can download the latest distribution of MiKTeX.

Installing MiKTeX is pretty straight forward, but it can sometimes be a pain to get it to play nicely with RStudio. If

at all possible we recommend that you use TinyTex.

B.2. Mac OSX

If for some reason TinyTeX does not work on your Mac computer then you can try to install MacTeX instead. You

can download the latest version of MacTeX here.

B.3. Linux

An alternative to TinyTex on linux would be to use a full fledge distribution of LATEX such as TexLive

660

https://miktex.org/download
http://www.tug.org/mactex/mactex-download.html
https://tug.org/texlive/

	Preface
	The aim of this book
	Multilingual book
	How to use this book
	Who are we ?
	Thanks
	Image credits
	License
	Citing the book
	Course associated reading
	Hex Sticker

	Using R
	Getting started
	Some R pointers
	Installation
	Installing R
	Installing an IDE

	IDE orientation
	RStudio
	VSCode

	Working directories
	Directory structure
	Projects organisation
	RStudio
	VSCode

	File names
	Script documentation
	R style guide
	Backing up projects
	Citing R and R packages

	Some R basics
	Important considerations
	First step in the console
	Objects in R
	Creating objects
	Naming objects

	Using functions in R
	Working with vectors
	Extracting elements
	Replacing elements
	Ordering elements
	Vectorisation
	Missing data

	Getting help
	R help
	Other sources of help

	Saving stuff in R
	R packages
	Using packages
	Installing R packages


	Data
	Data types
	Data structures
	Scalars and vectors
	Matrices and arrays
	Lists
	Data frames

	Importing data
	Saving files to import
	Import functions
	Common import frustrations
	Other import options

	Wrangling data frames
	Positional indexes
	Logical indexes
	Ordering data frames
	Adding columns and rows
	Merging data frames
	Reshaping data frames

	Introduction to the tidyverse
	Summarising data frames
	Exporting data
	Export functions
	Other export functions


	Figures
	Simple base R plots
	ggplot2
	Simple plots
	Scatterplots
	Histograms
	Box plots
	Violin plots
	Dot charts
	Pairs plots
	Coplots
	Summary of plot function

	Multiple graphs
	Base R
	ggplot

	Customising ggplots
	Exporting plots

	Programming
	Looking behind the curtain
	Functions in R
	Conditional statements
	Combining logical operators
	Loops
	For loop
	While loop
	When to use a loop?
	If not loops, then what?


	Reproducible reports with Quarto
	What is R markdown / Quarto?
	R Markdown
	Quarto?

	Why use Quarto?
	Get started with Quarto
	Installation
	Create a Quarto document, .qmd

	Quarto document (.qmd) anatomy
	YAML header
	Formatted text
	Code chunks
	Inline R code
	Images and photos
	Figures
	Tables
	Cross-referencing
	Citations and bibliography

	Some tips and tricks
	Further Information
	Practical
	Context
	Questions
	Example of output


	Version control with Git and GitHub
	What is version control?
	Why use version control?
	What is Git and GitHub?
	Getting started
	Install Git
	Configure Git
	Configure RStudio
	Configure VSCode
	Register a GitHub account

	Setting up a project
	in RStudio
	Option 1 - GitHub first
	Option 2 - RStudio first
	in VSCode

	Using Git with RStudio
	Tracking changes
	Commit history
	Reverting changes

	Using Git with VSCode
	Tracking changes
	Commit History
	Reverting changes

	Collaborate with Git
	Git tips
	Further resources
	Practical
	Context
	Information of the data
	Questions
	Solution



	Fundamentals of stats
	Power Analysis
	The theory
	What is power?
	Why do a power analysis?
	Factors affecting power
	Types of power analyses
	How to calculate effect size

	Practical
	What is G*Power?
	How to use G*Power
	Power analysis for a t-test on two independent means
	Post-hoc analysis
	A priori analysis
	Sensitivity analysis - Calculate the detectable effect size

	Important points to remember


	Linear models
	Correlation and simple linear regression
	R packages and data
	Scatter plots
	Data transformations and the product-moment correlation
	Testing the significance of correlations and Bonferroni probabilities
	Non-parametric correlations: Spearman's rank and Kendall's \tau
	Simple linear regression
	Testing regression assumptions
	Formal tests of regression assumptions

	Data transformations in regression
	Dealing with outliers
	Quantifying effect size in regression and power analysis
	Power to detect a given slope
	Sample size required to achieve desired power

	Bootstrapping the simple linear regression

	Two - sample comparisons
	R packages and data
	Visual examination of sample data
	Comparing means of two independent samples: parametric and non-parametric comparisons
	Bootstrap and permutation tests to compare 2 means
	Bootstrap
	Permutation

	Comparing the means of paired samples
	Bibliography

	One-way ANOVA
	R packages and data
	One-way ANOVA with multiple comparisons
	Visualize data
	Testing the assumptions of a parametric ANOVA
	Performing the ANOVA
	Performing multiple comparisons of means test

	Data transformations and non-parametric ANOVA
	Dealing with outliers
	Permutation test

	Multiway ANOVA: factorial and nested designs
	R packages and data needed
	Two-way factorial design with replication
	Fixed effects ANOVA (Model I)
	Mixed effects ANOVA (Model III)

	2-way factorial ANOVA without replication
	Nested designs
	Two-way non-parametric ANOVA
	Multiple comparisons
	Test de permutation pour l'ANOVA à deux facteurs de classification
	Bootstrap for two-way ANOVA

	Multiple regression
	R packages and data
	Points to keep in mind
	First look at the data
	Multiple regression models from scratch
	Stepwise multiple regression procedures
	Detecting multicollinearity
	Polynomial regression
	Checking assumptions of a multiple regression model
	Visualizing effect size
	Testing for interactions
	Dredging and the information theoretical approach
	Bootstrapping multiple regression
	Permutation test

	ANCOVA and general linear model
	R packages and data
	Linear models
	ANCOVA
	Homogeneity of slopes
	Case 1 - Size as a function of age (equal slopes example)
	Case 2 - Size as a function of age (different slopes example)

	The ANCOVA model
	Comparing model fits
	Bootstrap
	Permutation test


	Generalized linear models
	Generalized linear model, glm
	Lecture
	Distributions

	Practical
	Logistic regression
	Poisson regression


	Frequency data and Poisson Regression
	R packages and data
	Organizing the data: 3 forms
	Graphs for contingency tables and testing for independence
	Log-linear models as an alternative to Chi-square test for contingency tables
	Testing an external hypothesis
	Poisson regression to analyze multi-way tables
	Exercice


	Mixed models
	Introduction to linear mixed models
	Lecture
	Testing fixed effects
	Shrinkage

	Practical
	Overview
	R packages needed
	The superb wild unicorns of the Scottish Highlands
	Do unicorns differ in aggressiveness? Your first mixed model
	Do unicorns differ in aggressiveness? A better mixed model
	What is the repeatability?
	A quick note on uncertainty
	An easy way to mess up your mixed models
	Happy mixed-modelling


	Introduction to GLMM
	Lecture
	Practical
	Packages and functions
	The data set
	Specifying fixed and random Effects
	Look at overall patterns in data
	Choose an error distribution
	Fitting group-wise GLM
	Fitting and evaluating GLMMs
	Inference
	Conclusions
	Happy generalized mixed-modelling


	Random regression and character state approaches
	Lecture
	Practical
	R packages needed
	Refresher on unicorn aggression
	Random regression
	Character-State approach
	From random regression to character-state
	Conclusions
	Happy multivariate models


	Multivariate mixed models
	Lecture
	Practical
	R packages needed
	The blue dragon of the East
	Multiple univariate models
	Multivariate approach
	Happy multivariate models



	Generalized additive models
	Multivariate analysis
	Bayesian approach
	Beyond P < 0.05
	Introduction to Bayesian Inference
	Lecture
	Bayes' theorem
	Intro to MCMC
	Inferences

	Practical
	R packages needed
	A refresher on unicorn ecology
	MCMCglmm
	Inferences
	brms
	Inferences
	Happy Bayesian stats



	References
	R packages
	Bibliography

	Appendices
	Data used in this book
	All in one zip file
	All the data files
	R code used in the book and slides

	Installing Quarto and LateX
	MS Windows
	Mac OSX
	Linux



